Probabilistic Deduction with Conditional Constraints over Basic Events
نویسنده
چکیده
We study the problem of probabilistic deduction with conditional constraints over basic events. We show that globally complete probabilistic deduction with conditional constraints over basic events is NP-hard. We then concentrate on the special case of probabilistic deduction in conditional constraint trees. We elaborate very eecient techniques for globally complete probabilistic deduction. In detail, for conditional constraint trees with point probabilities, we present a local approach to globally complete probabilistic deduction, which runs in linear time in the size of the conditional constraint trees. For conditional constraint trees with interval probabilities, we show that globally complete probabilistic deduction can be done in a global approach by solving nonlinear programs. We show how these nonlinear programs can be transformed into equivalent linear programs, which are solvable in polynomial time in the size of the conditional constraint trees.
منابع مشابه
Magic Inference Rules for Probabilistic Deduction under Taxonomic Knowledge
We present locally complete inference rules for probabilistic deduction from taxonomic and probabilistic knowledge-bases over conjunctive events. Crucially, in contrast to similar inference rules in the literature, our inference rules are locally complete for conjunctive events and under additional taxonomic knowledge. We discover that our inference rules are extremely complex and that it is at...
متن کاملMulti-granulation fuzzy probabilistic rough sets and their corresponding three-way decisions over two universes
This article introduces a general framework of multi-granulation fuzzy probabilistic roughsets (MG-FPRSs) models in multi-granulation fuzzy probabilistic approximation space over twouniverses. Four types of MG-FPRSs are established, by the four different conditional probabilitiesof fuzzy event. For different constraints on parameters, we obtain four kinds of each type MG-FPRSs...
متن کاملAbteilung Wissensbasierte Systeme Probabilistic Logic Programming with Conditional Constraints
We introduce a new approach to probabilistic logic programming in which probabilities are defined over a set of possible worlds. More precisely, classical program clauses are extended by a subinterval of [0; 1℄ that describes a range for the conditional probability of the head of a clause given its body. We then analyze the complexity of selected probabilistic logic programming tasks. It turns ...
متن کاملConditional Deduction Under Uncertainty
Conditional deduction in binary logic basically consists of deriving new statements from an existing set of statements and conditional rules. Modus Ponens, which is the classical example of a conditional deduction rule, expresses a conditional relationship between an antecedent and a consequent. A generalisation of Modus Ponens to probabilities in the form of probabilistic conditional inference...
متن کاملProbabilistic Logic Programming
We present a new approach to probabilistic logic programs with a possible worlds semantics. Classical program clauses are extended by a subinterval of [0; 1] that describes the range for the conditional probability of the head of a clause given its body. We show that deduction in the defined probabilistic logic programs is computationally more complex than deduction in classical logic programs....
متن کامل