Proper cytoskeletal architecture beneath the plasma membrane of red blood cells requires Ttll4
نویسندگان
چکیده
Mammalian red blood cells (RBCs) circulate through blood vessels, including capillaries, for tens of days under high mechanical stress. RBCs tolerate this mechanical stress while maintaining their shape because of their elastic membrane skeleton. This membrane skeleton consists of spectrin-actin lattices arranged as quasi-hexagonal units beneath the plasma membrane. In this study, we found that the organization of the RBC cytoskeleton requires tubulin tyrosine ligase-like 4 (Ttll4). RBCs from Ttll4-knockout mice showed larger average diameters in smear test. Based on the rate of hemolysis, Ttll4-knockout RBCs showed greater vulnerability to phenylhydrazine-induced oxidative stress than did wild-type RBCs. Ultrastructural analyses revealed the macromolecular aggregation of cytoskeletal components in RBCs of Ttll4-knockout mice. Immunoprecipitation using the anti-glutamylation antibody GT335 revealed nucleosome assembly protein 1 (NAP1) to be the sole target of TTLL4 in the RBCs, and NAP1 glutamylation was completely lost in Ttll4-knockout RBCs. In wild-type RBCs, the amount of glutamylated NAP1 in the membrane was nearly double that in the cytosol. Furthermore, the absence of TTLL4-dependent glutamylation of NAP1 weakened the binding of NAP1 to the RBC membrane. Taken together, these data demonstrate that Ttll4 is required for proper cytoskeletal organization in RBCs.
منابع مشابه
Effect of low dose X-ray on membrane fluidity of thalassemic red blood cells
Background: Chest X-ray is one of the examinations required for an annual health checkup. The interaction of radiation to the medium produces free radicals, which consequently causes biological changes either structural or properties of the cells. Whether the radiation from Chest X-ray upright technique affects the plasma membrane fluidity of thalassemic red blood cells (RBCs) is still unclear....
متن کاملCytosolic Extract Induces Tir Translocation and Pedestals in EPEC-Infected Red Blood Cells
Enteropathogenic Escherichia coli (EPEC) are deadly contaminants in water and food, and induce protrusion of actin-filled membranous pedestals beneath themselves upon attachment to intestinal epithelia. Pedestal formation requires clustering of Tir and subsequent recruitment of cellular tyrosine kinases including Abl, Arg, and Etk as well as signaling molecules Nck, N-WASP, and Arp2/3 complex. ...
متن کاملEvaluation of Effect of Plasmas Prepared from Packed Red Blood Cells at Different Weeks on Production of Nitric Oxide (NO) and Malondialdehyde (MDA) from Peripheral Blood Mononuclear Cells in Vitro
Introduction: In present study, we evaluated the effect of plasma collected from packed red blood cells (PRBCs) at various weeks after donation on peripheral blood mononuclear cells (PBMCs). Methods: In this experimental study, plasma prepared from twenty PRBCs in the first, second, fourth, and fifth weeks after donation. PBMCs were also isolated from healthy donors and treated with different c...
متن کاملRED CELLS Alternative splicing of protein 4.1R exon 16: ordered excision of flanking introns ensures proper splice site choice
Alternative splicing plays a major role in regulating tissue-specific expression of cytoskeletal protein 4.1R isoforms. In particular, expression of the protein’s functionally critical spectrin-actin binding domain, essential for maintenance of red cell membrane mechanical properties, is governed by a developmentally regulated splicing switch involving alternative exon 16. Using a model 3-exon ...
متن کاملCytoskeleton mediated effective elastic properties of model red blood cell membranes.
The plasma membrane of human red blood cells consists of a lipid bilayer attached to a regular network of underlying cytoskeletal polymers. We model this system at a dynamic coarse-grained level, treating the bilayer as an elastic sheet and the cytoskeletal network as a series of phantom entropic springs. In contrast to prior simulation efforts, we explicitly account for dynamics of the cytoske...
متن کامل