Tetrahedral mesh improvement via optimization of the elementcondition

نویسندگان

  • Lori A. Freitag
  • Patrick M. Knupp
چکیده

SUMMARY We present a new shape measure for tetrahedral elements that is optimal in that it gives the distance of a tetrahedron from the set of inverted elements. This measure is constructed from the condition number of the linear transformation between a unit equilateral tetrahedron and any tetrahedron with positive volume. Using this shape measure, we formulate two optimization objective functions that are diierentiated by their goal: the rst seeks to improve the average quality of the tetrahedral mesh; the second aims to improve the worst-quality element in the mesh. We review the optimization techniques used with each objective function and present experimental results that demonstrate the eeectiveness of the mesh improvement methods. We show that a combined optimization approach that uses both objective functions obtains the best-quality meshes for several complex geometries.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tetrahedral mesh improvement via optimization of the elementcondition numberLori

SUMMARY We present a new shape measure for tetrahedral elements that is optimal in that it gives the distance of a tetrahedron from the set of inverted elements. This measure is constructed from the condition number of the linear transformation between a unit equilateral tetrahedron and any tetrahedron with positive volume. Using this shape measure, we formulate two optimization objective funct...

متن کامل

Quality Improvement Algorithm for Tetrahedral Mesh Based on Optimal Delaunay Triangulation

The concept of optimal Delaunay triangulation (ODT) and the corresponding error-based quality metric are first introduced. Then one kind of mesh smoothing algorithm for tetrahedral mesh based on the concept of ODT is examined. With regard to its problem of possible producing illegal elements, this paper proposes a modified smoothing scheme with a constrained optimization model for tetrahedral m...

متن کامل

Tetrahedral Element Shape Optimization via the Jacobian Determinant and Condition Number

We present a new shape measure for tetrahedral elements that is optimal in the sense that it gives the distance of a tetrahedron from the set of inverted elements. This measure is constructed from the condition number of the linear transformation between a unit equilateral tetrahedron and any tetrahedron with positive volume. We use this shape measure to formulate two optimization objective fun...

متن کامل

Tetrahedral mesh improvement via optimization of the element condition number

We present a new shape measure for tetrahedral elements that is optimal in that it gives the distance of a tetrahedron from the set of inverted elements. This measure is constructed from the condition number of the linear transformation between a unit equilateral tetrahedron and any tetrahedron with positive volume. Using this shape measure, we formulate two optimization objective functions tha...

متن کامل

Aggressive Tetrahedral Mesh Improvement

We present a tetrahedral mesh improvement schedule that usually creates meshes whose worst tetrahedra have a level of quality substantially better than those produced by any previous method for tetrahedral mesh generation or “mesh clean-up.” Our goal is to aggressively optimize the worst tetrahedra, with speed a secondary consideration. Mesh optimization methods often get stuck in bad local opt...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002