N-Glycosylation is not a prerequisite for glutamate receptor function but Is essential for lectin modulation.

نویسندگان

  • I Everts
  • C Villmann
  • M Hollmann
چکیده

All ionotropic glutamate receptor (iGluR) subunits analyzed so far are heavily N-glycosylated at multiple sites on their amino-terminal extracellular domains. Although the exact functional significance of this glycosylation remains to be determined, it has been suggested that N-glycosylation may be a precondition for the formation of functional ion channels. In particular, it has been argued that N-glycosylation is required for the formation of functional ligand binding sites. We analyzed heterologously expressed recombinant glutamate receptors (GluRs) of all three pharmacological subclasses of glutamate receptors, N-methyl-D-aspartate (NMDA), alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid, and kainate receptors. By expressing the GluR subunits in tunicamycin-treated, nonglycosylating Xenopus laevis oocytes, we determined that in neither case is N-glycosylation required for ion channel function, although for NMDA receptors, functional expression in the absence of N-glycosylation is very low. Furthermore, we analyzed and compared the interaction of the desensitization-inhibiting lectin concanavalin A (ConA) with all functional GluR subunits. We show that although ConA has its most pronounced effects on kainate receptors, it potentiates currents at most other receptor subtypes as well, including certain NMDA receptor subunits, although to a much lesser extent. One notable exception is the alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor GluR2, which is not affected by ConA. Furthermore, we show that ConA acts directly via binding to the carbohydrate side chains of the receptor protein.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lectin-induced inhibition of desensitization of the kainate receptor GluR6 depends on the activation state and can be mediated by a single native or ectopic N-linked carbohydrate side chain.

The ionotropic glutamate receptor GluR6 exhibits strongly and rapidly desensitizing current responses. Treatment of heterologically expressed GluR6 with the lectin concanavalin A (ConA) in Xenopus oocytes as well as in human embryonic kidney-293 cells results in a considerable increase of the steady-state current, presumably by inhibiting receptor desensitization. In the present study, we inves...

متن کامل

N-glycosylation requirements in neuromuscular synaptogenesis.

Neural development requires N-glycosylation regulation of intercellular signaling, but the requirements in synaptogenesis have not been well tested. All complex and hybrid N-glycosylation requires MGAT1 (UDP-GlcNAc:α-3-D-mannoside-β1,2-N-acetylglucosaminyl-transferase I) function, and Mgat1 nulls are the most compromised N-glycosylation condition that survive long enough to permit synaptogenesi...

متن کامل

An Alkaline Phosphatase Lacking Wheat Germ Agglutinin Binding Sites Useful Enzyme for Lectin Assays with Comparable Activity to the Calf Enzyme

Despite the availability of various alkaline phosphatase (ALP) isoenzymes, the calf enzyme is being used in current enzyme assays as the detector enzyme. The glycosylation pattern of this enzyme makes it a suitable ligand for binding to wheat germ agglutinin lectin (WGA). As a result of this property, the enzyme can not be used as a conjugate with this lectin, and the calf enzyme conjugates can...

متن کامل

Unilateral Hypothalamus Inactivation Prevents PTZ Kindling Development through Hippocampal Orexin Receptor 1 Modulation

Introduction: Epilepsy is a neural disorder in which abnormal plastic changes during short and long term periods lead to increased excitability of brain tissue. Kindling is an animal model of epileptogenesis which results in changes of synaptic plasticity due to repetitive electrical or chemical sub-convulsive stimulations of the brain. Lateral hypothalamus, as the main niche of orexin neurons ...

متن کامل

Evolutionarily Conserved Pattern of AMPA Receptor Subunit Glycosylation in Mammalian Frontal Cortex

Protein glycosylation may contribute to the evolution of mammalian brain complexity by adapting excitatory neurotransmission in response to environmental and social cues. Balanced excitatory synaptic transmission is primarily mediated by glutamatergic neurotransmission. Previous studies have found that subunits of the AMPA subtype of glutamate receptor are N-glycosylated, which may play a criti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular pharmacology

دوره 52 5  شماره 

صفحات  -

تاریخ انتشار 1997