Accuracy Ranking Selects Best KBS Gene rate and Implement
نویسندگان
چکیده
منابع مشابه
Productivity Strategies Ranking of Knowledge Workers
ABSTRACT: It is commonly recognized that knowledge is the only source of core competence in the knowledge based companies, but the productivity rate of Knowledge Workers is always Low. Based on Knowledge Workers’ characteristics, in this paper, we seek to identify factors influencing the Productivity of Knowledge Workers, and then strategies present for improvement of theirs Productivity. Final...
متن کاملToward a Deep Neural Approach for Knowledge-Based IR
This paper tackles the problem of the semantic gap between a document and a query within an ad-hoc information retrieval task. In this context, knowledge bases (KBs) have already been acknowledged as valuable means since they allow the representation of explicit relations between entities. However, they do not necessarily represent implicit relations that could be hidden in a corpora. This latt...
متن کاملSFLA Based Gene Selection Approach for Improving Cancer Classification Accuracy
In this paper, we propose a new gene selection algorithm based on Shuffled Frog Leaping Algorithm that is called SFLA-FS. The proposed algorithm is used for improving cancer classification accuracy. Most of the biological datasets such as cancer datasets have a large number of genes and few samples. However, most of these genes are not usable in some tasks for example in cancer classification....
متن کاملDiagnosis of the disease using an ant colony gene selection method based on information gain ratio using fuzzy rough sets
With the advancement of metagenome data mining science has become focused on microarrays. Microarrays are datasets with a large number of genes that are usually irrelevant to the output class; hence, the process of gene selection or feature selection is essential. So, it follows that you can remove redundant genes and increase the speed and accuracy of classification. After applying the gene se...
متن کاملBeyond Log-Linear Models: Boosted Minimum Error Rate Training for N-best Re-ranking
Current re-ranking algorithms for machine translation rely on log-linear models, which have the potential problem of underfitting the training data. We present BoostedMERT, a novel boosting algorithm that uses Minimum Error Rate Training (MERT) as a weak learner and builds a re-ranker far more expressive than log-linear models. BoostedMERT is easy to implement, inherits the efficient optimizati...
متن کامل