An integrated language modeling with n-gram model and WA model for speech recognition

نویسندگان

  • Shuwu Zhang
  • Taiyi Huang
چکیده

As to traditional n-gram model, smaller n value is an inherent defect for estimating language probabilities in speech recognition, simply because that estimation could not be executed over farther word association but by means of short sequential word correlated information. This has an strong effect on the performance of speech recognition. This paper introduces an integrated language modeling with ngram model and word association model (abbreviated as WA model). This model integrated two kind of joint probabilities, traditional n-gram probability and word association probability, to estimate actual output probability. WA model are based on a combined probability estimation of orderly word association without distant and strict sequential limitation. In addition, two kinds of local linguistic constraints have also been incorporated into n-gram estimation for smoothing date sparse and adjusting special language unit score locally. A substantial improvement for the performance of Chinese phonetic-to-text transcription in speech recognition has been obtained.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-Span statistical language modeling for large vocabulary speech recognition

The goal of multi-span language modeling is to integrate the various constraints, both local and global, that are present in the language. In this paper, local constraints are captured via the usual n-gram approach, while global constraints are taken into account through the use of latent semantic analysis. An integrative formulation is derived for the combination of these two paradigms, result...

متن کامل

Discriminative maximum entropy language model for speech recognition

This paper presents a new discriminative language model based on the whole-sentence maximum entropy (ME) framework. In the proposed discriminative ME (DME) model, we exploit an integrated linguistic and acoustic model, which properly incorporates the features from n-gram model and acoustic log likelihoods of target and competing models. Through the constrained optimization of integrated model, ...

متن کامل

Allophone-based acoustic modeling for Persian phoneme recognition

Phoneme recognition is one of the fundamental phases of automatic speech recognition. Coarticulation which refers to the integration of sounds, is one of the important obstacles in phoneme recognition. In other words, each phone is influenced and changed by the characteristics of its neighbor phones, and coarticulation is responsible for most of these changes. The idea of modeling the effects o...

متن کامل

Large Scale Distributed Acoustic Modeling With Back-Off ℕ-Grams

The paper revives an older approach to acoustic modeling that borrows from n-gram language modeling in an attempt to scale up both the amount of training data and model size (as measured by the number of parameters in the model), to approximately 100 times larger than current sizes used in automatic speech recognition. In such a data-rich setting, we can expand the phonetic context significantl...

متن کامل

Pseudo-Syntactic Language Modeling for Disfluent Speech Recognition

Abstract Language models for speech recognition are generally trained on text corpora. Since these corpora do not contain the disfluencies found in natural speech, there is a train/test mismatch when these models are applied to conversational speech. In this work we investigate a language model (LM) designed to model these disfluencies as a syntactic process. By modeling selfcorrections we obta...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997