MicroRNAs acting in a double-negative feedback loop to control a neuronal cell fate decision.

نویسندگان

  • Robert J Johnston
  • Sarah Chang
  • John F Etchberger
  • Christopher O Ortiz
  • Oliver Hobert
چکیده

The elucidation of the architecture of gene regulatory networks that control cell-type specific gene expression programs represents a major challenge in developmental biology. We describe here a cell fate decision between two alternative neuronal fates and the architecture of a gene regulatory network that controls this cell fate decision. The two Caenorhabditis elegans taste receptor neurons "ASE left" (ASEL) and "ASE right" (ASER) share many bilaterally symmetric features, but each cell expresses a distinct set of chemoreceptors that endow the gustatory system with the capacity to sense and discriminate specific environmental inputs. We show that these left/right asymmetric fates develop from a precursor state in which both ASE neurons express equivalent features. This hybrid precursor state is unstable and transitions into the stable ASEL or ASER terminal end state. Although this transition is spatially stereotyped in wild-type animals, mutant analysis reveals that each cell has the potential to transition into either the ASEL or ASER stable end state. The stability and irreversibility of the terminal differentiated state is ensured by the interactions of two microRNAs (miRNAs) and their transcription factor targets in a double-negative feedback loop. Simple feedback loops are found as common motifs in many gene regulatory networks, but the loop described here is unusually complex and involves miRNAs. The interaction of miRNAs in double-negative feedback loops may not only be a means for miRNAs to regulate their own expression but may also represent a general paradigm for how terminal cell fates are selected and stabilized.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cell fate simulation model of gustatory neurons with MicroRNAs double-negative feedback loop by hybrid functional Petri net with extension.

Biological regulatory networks have been extensively researched. Recently, the microRNA regulation has been analyzed and its importance has increasingly emerged. We have applied the Hybrid Functional Petri net with extension (HFPNe) model and succeeded in creating model biological pathways, e.g. metabolic pathways, gene regulatory networks, cell signaling networks, and cell-cell interaction mod...

متن کامل

Interplay of microRNA and epigenetic regulation in the human regulatory network

The expression of protein-coding genes is controlled by a complex network of regulatory interactions. It is becoming increasingly appreciated that post-transcriptional repression by microRNAs, a class of small non-coding RNAs, is a key layer of regulation in several biological processes. In this contribution, we discuss the interplay between microRNAs and epigenetic regulators. Among the mixed ...

متن کامل

A unilateral negative feedback loop between miR-200 microRNAs and Sox2/E2F3 controls neural progenitor cell-cycle exit and differentiation.

MicroRNAs have emerged as key posttranscriptional regulators of gene expression during vertebrate development. We show that the miR-200 family plays a crucial role for the proper generation and survival of ventral neuronal populations in the murine midbrain/hindbrain region, including midbrain dopaminergic neurons, by directly targeting the pluripotency factor Sox2 and the cell-cycle regulator ...

متن کامل

A systemic transcriptome analysis reveals the regulation of neural stem cell maintenance by an E2F1–miRNA feedback loop

Stem cell fate decisions are controlled by a molecular network in which transcription factors and miRNAs are of key importance. To systemically investigate their impact on neural stem cell (NSC) maintenance and neuronal commitment, we performed a high-throughput mRNA and miRNA profiling and isolated functional interaction networks of involved mechanisms. Thereby, we identified an E2F1-miRNA fee...

متن کامل

The sonic hedgehog signaling system as a bistable genetic switch.

Sonic hedgehog (Shh) controls critical cellular decisions between distinct fates in many systems, particularly in stem cells. The Shh network functions as a genetic switch, and we have theoretically and computationally analyzed how its structure can endow it with the ability to switch fate choices at a threshold Shh concentration. The network is composed of a positive transcriptional feedback l...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 102 35  شماره 

صفحات  -

تاریخ انتشار 2005