Riemann Integral of Functions from R into Real Normed Space

نویسندگان

  • Keiichi Miyajima
  • Takahiro Kato
  • Yasunari Shidama
چکیده

Let X be a real normed space, let A be a closed-interval subset of R, let f be a function from A into the carrier of X, and let D be a Division of A. A finite sequence of elements of X is said to be a middle volume of f and D if it satisfies the conditions (Def. 1). (Def. 1)(i) len it = lenD, and (ii) for every natural number i such that i ∈ domD there exists a point c of X such that c ∈ rng(f divset(D, i)) and it(i) = vol(divset(D, i)) · c.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Riemann Integral of Functions from R into Real Banach Space 1 Keiko Narita Hirosaki - city Aomori , Japan

In this article we deal with the Riemann integral of functions from R into a real Banach space. The last theorem establishes the integrability of continuous functions on the closed interval of reals. To prove the integrability we defined uniform continuity for functions from R into a real normed space, and proved related theorems. We also stated some properties of finite sequences of elements o...

متن کامل

Riemann Integral of Functions from R into Real Banach Space 1 Keiko Narita Hirosaki - city Aomori , Japan Noboru Endou

In this article we deal with the Riemann integral of functions from R into a real Banach space. The last theorem establishes the integrability of continuous functions on the closed interval of reals. To prove the integrability we defined uniform continuity for functions from R into a real normed space, and proved related theorems. We also stated some properties of finite sequences of elements o...

متن کامل

Riemann Integral of Functions from R into n-dimensional Real Normed Space

In this article, we define the Riemann integral on functions R into n-dimensional real normed space and prove the linearity of this operator. As a result, the Riemann integration can be applied to the wider range. Our method refers to the [21]. The terminology and notation used in this paper have been introduced in the E denotes an element of R n. We now state a number of propositions: (1) If a...

متن کامل

$L_{p;r} $ spaces: Cauchy Singular Integral, Hardy Classes and Riemann-Hilbert Problem in this Framework

In the present work the space  $L_{p;r} $ which is continuously embedded into $L_{p} $  is introduced. The corresponding Hardy spaces of analytic functions are defined as well. Some properties of the functions from these spaces are studied. The analogs of some results in the classical theory of Hardy spaces are proved for the new spaces. It is shown that the Cauchy singular integral operator is...

متن کامل

Differential Equations on Functions from R into Real Banach Space

In this article, we describe the differential equations on functions from R into real Banach space. The descriptions are based on the article [20]. As preliminary to the proof of these theorems, we proved some properties of differentiable functions on real normed space. For the proof we referred to descriptions and theorems in the article [21] and the article [32]. And applying the theorems of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Formalized Mathematics

دوره 19  شماره 

صفحات  -

تاریخ انتشار 2011