A Lower Bound for Boolean Satisfiability on Turing Machines

نویسنده

  • Samuel C. Hsieh
چکیده

We establish a lower bound for deciding the satisfiability of the conjunction of any two Boolean formulas from a set called a full representation of Boolean functions of n variables a set containing a Boolean formula to represent each Boolean function of n variables. The contradiction proof first assumes that there exists a Turing machine with k symbols in its tape alphabet that correctly decides the satisfiability of the conjunction of any two Boolean formulas from such a set by making fewer than 2logk2 moves. By using multiple runs of this Turing machine, with one run for each Boolean function of n variables, the proof derives a contradiction by showing that this Turing machine is unable to correctly decide the satisfiability of the conjunction of at least one pair of Boolean formulas from a full representation of n-variable Boolean functions if the machine makes fewer than 2logk2 moves. This lower bound holds for any full representation of Boolean functions of n variables, even if a full representation consists solely of minimized Boolean formulas derived by a Boolean minimization method. We discuss why the lower bound fails to hold for satisfiability of certain restricted formulas, such as 2CNF satisfiability, XOR-SAT, and HORN-SAT. We also relate the lower bound to 3CNF satisfiability. The lower bound does not depend on sequentiality of access to the tape squares and will hold even if a machine is capable of non-sequential access.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Lower Bound of 2n Conditional Branches for Boolean Satisfiability on Post Machines

We establish a lower bound of 2 conditional branches for deciding the satisfiability of the conjunction of any two Boolean formulas from a set called a full representation of Boolean functions of n variables a set containing a Boolean formula to represent each Boolean function of n variables. The contradiction proof first assumes that there exists a Post machine (Post’s Formulation 1) that corr...

متن کامل

Modulo Counting on Words and Trees

We consider the satisfiability problem for the two-variable fragment of the first-order logic extended with modulo counting quantifiers and interpreted over finite words or trees. We prove a small-model property of this logic, which gives a technique for deciding the satisfiability problem. In the case of words this gives a new proof of ExpSpace upper bound, and in the case of trees it gives a ...

متن کامل

The Complexity of Matrix Transposition on One-Tape Off-Line Turing Machines with Output Tape

Dietzfelbinger. hl. and W' hlaass. The complexity of matrrx transposition on one-tape off-line Turing machines with output tape, Thcorettcal A series of existing lower bound results for deterministic one-tape Turing machines is extended to another, stronger such model suttable for the computatton of functions: one-tape off-line Turing machines wtth a wrote-only output tape. (" OfT-line " means:...

متن کامل

Non-Linear Time Lower Bound for (Succinct) Quantified Boolean Formulas

We prove a model-independent non-linear time lower bound for a slight generalization of the quantified Boolean formula problem (QBF). In particular, we give a reduction from arbitrary languages in alternating time t(n) to QBFs describable in O(t(n)) bits by a reasonable (polynomially) succinct encoding. The reduction works for many reasonable machine models, including multitape Turing machines,...

متن کامل

A Lower Complexity Bound for Propositional Dynamic Logic with Intersection

This paper shows that satisfiability for Propositional Dynamic Logic with Intersection is EXPSPACE-hard. The proof uses a reduction from the word problem for alternating, exponential time bounded Turing Machines.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1406.5970  شماره 

صفحات  -

تاریخ انتشار 2014