Straightening for Standard Monomials on Schubert Varieties

نویسندگان

  • V. Reiner
  • M. Shimozono
چکیده

w x Hodge and Pedoe 5 constructed bases of the homogeneous coordinate rings of the Schubert varieties in the Grassmannian, consisting of certain products of Plucker coordinates called standard monomials. Lakshmibai, ̈ w x Musili, and Seshadri 6 have generalized this theory extensively, giving standard monomial bases of the spaces of global sections of certain line bundles over unions of Schubert varieties in GrB where G is a classical group and B is a Borel subgroup. The purpose of this article is to give an elementary proof that the standard monomials yield a basis of the coordiŽ nate ring of a single Schubert subvariety of the flag variety that is, G is of . type A . The part of the original proof that is not elementary is the

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The AS-Cohen-Macaulay property for quantum flag manifolds of minuscule weight

It is shown that quantum homogeneous coordinate rings of generalised flag manifolds corresponding to minuscule weights, their Schubert varieties, big cells, and determinantal varieties are AS-CohenMacaulay. The main ingredient in the proof is the notion of a quantum graded algebra with a straightening law, introduced by T.H. Lenagan and L. Rigal [J. Algebra 301 (2006), 670-702]. Using Stanley’s...

متن کامل

Hilbert functions of ladder determinantal varieties

We consider algebraic varieties de)ned by the vanishing of all minors of a )xed size of a rectangular matrix with indeterminate entries such that the indeterminates in these minors are restricted to lie in a ladder shaped region of the rectangular array. Explicit formulae for the Hilbert function of such varieties are obtained in (i) the rectangular case by Abhyankar (Rend. Sem. Mat. Univers. P...

متن کامل

Gröbner geometry of Schubert polynomials

Schubert polynomials, which a priori represent cohomology classes of Schubert varieties in the flag manifold, also represent torus-equivariant cohomology classes of certain determinantal loci in the vector space of n×n complex matrices. Our central result is that the minors defining these “matrix Schubert varieties” are Gröbner bases for any antidiagonal term order. The Schubert polynomials are...

متن کامل

Fe b 20 02 Gröbner geometry of Schubert polynomials

Schubert polynomials, which a priori represent cohomology classes of Schubert varieties in the flag manifold, also represent torus-equivariant cohomology classes of certain determinantal loci in the vector space of n×n complex matrices. Our central result is that the minors defining these “matrix Schubert varieties” are Gröbner bases for any antidiagonal term order. The Schubert polynomials are...

متن کامل

Initial ideals of tangent cones to Richardson varieties in the Orthogonal Grassmannian via a Orthogonal-Bounded-RSK-Correspondence

A Richardson variety X α in the Orthogonal Grassmannian is defined to be the intersection of a Schubert variety X in the Orthogonal Grassmannian and a opposite Schubert variety Xα therein. We give an explicit description of the initial ideal (with respect to certain conveniently chosen term order) for the ideal of the tangent cone at any T -fixed point of X γ α, thus generalizing a result of Ra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997