The flagellar cytoskeleton of the spirochetes.
نویسندگان
چکیده
The recent discoveries of prokaryotic homologs of all three major eukaryotic cytoskeletal proteins (actin, tubulin, intermediate filaments) have spurred a resurgence of activity in the field of bacterial morphology. In spirochetes, however, it has long been known that the flagellar filaments act as a cytoskeletal protein structure, contributing to their shape and conferring motility on this unique phylum of bacteria. Therefore, revisiting the spirochete cytoskeleton may lead to new paradigms for exploring general features of prokaryotic morphology. This review discusses the role that the periplasmic flagella in spirochetes play in maintaining shape and producing motility. We focus on four species of spirochetes: Borrelia burgdorferi, Treponema denticola, Treponema phagedenis and Leptonema (formerly Leptospira) illini. In spirochetes, the flagella reside in the periplasmic space. Rotation of the flagella in the above species by a flagellar motor induces changes in the cell morphology that drives motility. Mutants that do not produce flagella have a markedly different shape than wild-type cells.
منابع مشابه
O-11: Dynamics of Flagellar Force Generated by A Hyperactivated Spermatozoon
Background: To clarify the mechanism of sperm penetration through the zona pellucida, the flagellar force generated by a hyperactivated spermatozoon was evaluated using the resistive force theory applied to the hyperactivated flagellar waves that were obtained from the mammalian spermatozoa. Materials and Methods: The hydrodynamic calculation of the flagellar force of the activated (non-hyperac...
متن کاملThe Chimeric Genome of Sphaerochaeta: Nonspiral Spirochetes That Break with the Prevalent Dogma in Spirochete Biology
UNLABELLED Spirochaetes is one of a few bacterial phyla that are characterized by a unifying diagnostic feature, namely, the helical morphology and motility conferred by axial periplasmic flagella. Their unique morphology and mode of propulsion also represent major pathogenicity factors of clinical spirochetes. Here we describe the genome sequences of two coccoid isolates of the recently descri...
متن کاملEvolution of the microtubular cytoskeleton (flagellar apparatus) in parasitic protists.
The microtubular cytoskeleton of most single-celled eukaryotes radiates from an organizing center called the flagellar apparatus, which is essential for locomotion, feeding and reproduction. The structure of the flagellar apparatus tends to be conserved within diverse clades of eukaryotes, and modifications of this overall structure distinguish different clades from each other. Understanding th...
متن کاملHost-parasite interactions and trypanosome morphogenesis: a flagellar pocketful of goodies.
Trypanosomes are characterised by the possession of a single flagellum and a subpellicular microtubule cytoskeleton. The flagellum is more than an organelle for motility; its position and polarity along with the sub-pellicular cytoskeleton enables the morphogenesis of a distinct flagellar pocket and the flagellar basal body is responsible for positioning and segregating the kinetoplast--the mit...
متن کاملBacterial flagellar diversity and significance in pathogenesis.
Bacterial flagella are structurally diverse, ranging from the thoroughly investigated model examples found in Escherichia coli and Salmonella typhimurium to the more exotic sheathed flagella of, for example, Helicobacter pylori, and the complex multi-flagellin endoflagella found in many spirochaetes. We summarize some of the emerging structural and genetic findings relating to these more novel ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of molecular microbiology and biotechnology
دوره 11 3-5 شماره
صفحات -
تاریخ انتشار 2006