Urea retranslocation from senescing Arabidopsis leaves is promoted by DUR3-mediated urea retrieval from leaf apoplast

نویسندگان

  • Anne Bohner
  • Soichi Kojima
  • Mohammad Hajirezaei
  • Michael Melzer
  • Nicolaus von Wirén
چکیده

In plants, urea derives either from root uptake or protein degradation. Although large quantities of urea are released during senescence, urea is mainly seen as a short-lived nitrogen (N) catabolite serving urease-mediated hydrolysis to ammonium. Here, we investigated the roles of DUR3 and of urea in N remobilization. During natural leaf senescence urea concentrations and DUR3 transcript levels showed a parallel increase with senescence markers like ORE1 in a plant age- and leaf age-dependent manner. Deletion of DUR3 decreased urea accumulation in leaves, whereas the fraction of urea lost to the leaf apoplast was enhanced. Under natural and N deficiency-induced senescence DUR3 promoter activity was highest in the vasculature, but was also found in surrounding bundle sheath and mesophyll cells. An analysis of petiole exudates from wild-type leaves revealed that N from urea accounted for >13% of amino acid N. Urea export from senescent leaves further increased in ureG-2 deletion mutants lacking urease activity. In the dur3 ureG double insertion line the absence of DUR3 reduced urea export from leaf petioles. These results indicate that urea can serve as an early metabolic marker for leaf senescence, and that DUR3-mediated urea retrieval contributes to the retranslocation of N from urea during leaf senescence.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extraction of Apoplastic Wash Fluids and Leaf Petiole Exudates from Leaves of Arabidopsis thaliana

[Abstract] The long-distance translocation of metabolites and mineral elements is crucial for plant growth and reproduction. In most cases, source-to-sink translocation of metabolites and minerals requires their passage through the apoplast, irrespective whether they are transported via the xylem or the phloem. This apoplast-mediated pathway is of particular importance during plant senescence, ...

متن کامل

Dur3 is the major urea transporter in Candida albicans and is co-regulated with the urea amidolyase Dur1,2

Hemiascomycetes, including the pathogen Candida albicans, acquire nitrogen from urea using the urea amidolyase Dur1,2, whereas all other higher fungi use primarily the nickel-containing urease. Urea metabolism via Dur1,2 is important for resistance to innate host immunity in C. albicans infections. To further characterize urea metabolism in C. albicans we examined the function of seven putative...

متن کامل

Gross nitrogen retranslocation within a canopy of Quercus serrata saplings.

Nitrogen (N) retranslocation within tree canopies has been intensively studied and assumed to function as a one-way process (e.g., from older to newer leaves). However, recent studies have found that both N output and input occur in individual leaves, suggesting that 'gross' N retranslocation exists behind 'net' N retranslocation. In the present study, the amount and direction of gross N retran...

متن کامل

Molecular genetic control of leaf lifespan in plants - A review

Leaf senescence constitutes the last stage of leaf development in plants and proceeds through a highly regulated program in order to redistribution of micro- and macro-nutrients from the senescing leaves to the developing/growing plant organs. Initiation and progression of leaf senescence is accompanied by massive sequential alterations at various levels of leaf biology including leaf morpholog...

متن کامل

Leaf urea metabolism in potato. Urease activity profile and patterns of recovery and distribution of (15)N after foliar urea application in wild-type and urease-antisense transgenics.

The influence of urease activity on N distribution and losses after foliar urea application was investigated using wild-type and transgenic potato (Solanum tuberosum cv Désirée) plants in which urease activity was down-regulated. A good correlation between urease activity and (15)N urea metabolism (NH(3) accumulation) was found. The general accumulation of ammonium in leaves treated with urea i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 81  شماره 

صفحات  -

تاریخ انتشار 2015