Polarization control of Raman spectroscopy optimizes the assessment of bone tissue.
نویسندگان
چکیده
There is potential for Raman spectroscopy (RS) to complement tools for bone diagnosis due to its ability to assess compositional and organizational characteristics of both collagen and mineral. To aid this potential, the present study assessed specificity of RS peaks to the composition of bone, a birefringent material, for different degrees of instrument polarization. Specifically, relative changes in peaks were quantified as the incident light rotated relative to the orientation of osteonal and interstitial tissue, acquired from cadaveric femurs. In a highly polarized instrument (10(6)∶1 extinction ratio), the most prominent mineral peak (ν1 Phosphate at 961 cm(-1)) displayed phase similarity with the Proline peak at 856 cm(-1). This sensitivity to relative orientation between bone and light observed in the highly polarized regime persisted for certain sensitive peaks (e.g., Amide I at 1666 cm(-1)) in unaltered instrumentation (200∶1 extinction ratio). Though Proline intensity changed with bone rotation, the phase of Proline matched that of ν1 Phosphate. Moreover, when mapping ν1 Phosphate/Proline across osteonal-interstitial borders, the mineralization difference between the tissue types was evident whether using a 20x or 50x objectives. Thus, the polarization bias inherent in commercial RS systems does not preclude the assessment of bone composition when using phase-matched peaks.
منابع مشابه
Detection and Characterization of Human Teeth Caries Using 2D Correlation Raman Spectroscopy
Background: Carious lesions are formed by a complex process of chemical interaction between dental enamel and its environment. They can cause cavities and pain, and are expensive to fix. It is hard to characterize in vivo as a result of environment factors and remineralization by ions in the oral cavity. Objectives: The development of a technique that gives early diagnosis which is non-invasi...
متن کاملAssessment of environmental high-doses using Raman spectroscopy of gamma irradiated MWCNT-OH Nanopowder utilized in radiation accidents
Introduction: The functionalized Multi-Walled Carbon Nanotube with hydroxyl group (MWCNT-OH) due to high aspect ratios (length to diameter), and also excellent mechanical, electrical and thermal characteristics, has great potential applications in flexible electronics, solar cells, antistatic devices, electromagnetic interference shielding, radiation shielding, electrode materi...
متن کاملLaser Micro-Raman Spectroscopy of CVD Nanocrystalline Diamond Thin Film
Laser micro-Raman spectroscopy is an ideal tool for assessment and characterization of various types of carbon-based materials. Due to its special optical properties (CrN) coated stainless steel substrates. NCD films have been investigated by laser micro-Raman spectroscopy. The fingerprint of diamond based materials is in the spectral region of 1000-1600 cm-1 in the first order of Raman scatter...
متن کاملPolarization in Raman spectroscopy helps explain bone brittleness in genetic mouse models.
Raman spectroscopy (RS) has been extensively used to characterize bone composition. However, the link between bone biomechanics and RS measures is not well established. Here, we leveraged the sensitivity of RS polarization to organization, thereby assessing whether RS can explain differences in bone toughness in genetic mouse models for which traditional RS peak ratios are not informative. In t...
متن کاملDiagnosis of Tooth Decay Using Polarized Micro-raman Confocal Spectroscopy
The tooth enamel presents a Raman spectrum with strong polarization anisotropy. Carious lesions of the enamel will produce an alteration of local symmetry. This will reduce the anisotropy of the Raman spectra. Thus micro-Raman polarized spectroscopy could be a used in early detection of teeth caries.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of biomedical optics
دوره 18 5 شماره
صفحات -
تاریخ انتشار 2013