Some Optimal Stopping Problems with Nontrivial Boundaries for Pricing Exotic Options
نویسنده
چکیده
We solve the following three optimal stopping problems for different kinds of options, based on the Black–Scholes model of stock fluctuations. (i) The perpetual lookback American option for the running maximum of the stock price during the life of the option. This problem is more difficult than the closely related one for the Russian option, and we show that for a class of utility functions the free boundary is governed by a nonlinear ordinary differential equation. (ii) A new type of stock option, for a company, where the company provides a guaranteed minimum as an added incentive in case the market appreciation of the stock is low, thereby making the option more attractive to the employee. We show that the value of this option is given by solving a nonalgebraic equation. (iii) A new call option for the option buyer who is risk-averse and gets to choose, a priori, a fixed constant l as a ‘hedge’ on a possible downturn of the stock price, where the buyer gets the maximum of l and the price at any exercise time. We show that the optimal policy depends on the ratio of x/l, where x is the current stock price.
منابع مشابه
Callable Russian Options and Their Optimal Boundaries
We deal with the pricing of callable Russian options. A callable Russian option is a contract in which both of the seller and the buyer have the rights to cancel and to exercise at any time, respectively. The pricing of such an option can be formulated as an optimal stopping problem between the seller and the buyer, and is analyzed as Dynkin game. We derive the value function of callable Russia...
متن کاملOptimal stopping for a diffusion with jumps
In this paper we give the closed form solution of some optimal stopping problems for processes derived from a diffusion with jumps. Within the possible applications, the results can be interpreted as pricing perpetual American Options under diffusion-jump information.
متن کاملPerpetual American options in diffusion-type models with running maxima and drawdowns
We study perpetual American option pricing problems in an extension of the BlackMerton-Scholes model in which the dividend and volatility rates of the underlying risky asset depend on the running values of its maximum and maximum drawdown. The optimal exercise times are shown to be the first times at which the underlying asset hits certain boundaries depending on the running values of the assoc...
متن کاملFree boundary and optimal stopping problems for American Asian options
We give a complete and self-contained proof of the existence of a strong solution to the free boundary and optimal stopping problems for pricing American path-dependent options. The framework is sufficiently general to include geometric Asian options with nonconstant volatility and recent path-dependent volatility models.
متن کاملDiscounted optimal stopping for maxima of some jump-diffusion processes∗
We present closed form solutions to some discounted optimal stopping problems for the maximum process in a model driven by a Brownian motion and a compound Poisson process with exponential jumps. The method of proof is based on reducing the initial problems to integro-differential freeboundary problems where the normal reflection and smooth fit may break down and the latter then be replaced by ...
متن کامل