DMINDA 2.0: integrated and systematic views of regulatory DNA motif identification and analyses

نویسندگان

  • Jinyu Yang
  • Xin Chen
  • Adam McDermaid
  • Qin Ma
چکیده

Motivation Motif identification and analyses are important and have been long-standing computational problems in bioinformatics. Substantial efforts have been made in this field during the past several decades. However, the lack of intuitive and integrative web servers impedes the progress of making effective use of emerging algorithms and tools. Results Here we present an integrated web server, DMINDA 2.0, which contains: (i) five motif prediction and analyses algorithms, including a phylogenetic footprinting framework; (ii) 2125 species with complete genomes to support the above five functions, covering animals, plants and bacteria and (iii) bacterial regulon prediction and visualization. Availability and Implementation DMINDA 2.0 is freely available at http://bmbl.sdstate.edu/DMINDA2. Contact [email protected]. Supplementary information Supplementary data are available at Bioinformatics online.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

DMINDA: an integrated web server for DNA motif identification and analyses

DMINDA (DNA motif identification and analyses) is an integrated web server for DNA motif identification and analyses, which is accessible at http://csbl.bmb.uga.edu/DMINDA/. This web site is freely available to all users and there is no login requirement. This server provides a suite of cis-regulatory motif analysis functions on DNA sequences, which are important to elucidation of the mechanism...

متن کامل

An integrative and applicable phylogenetic footprinting framework for <i>cis</i>-regulatory motifs identification in prokaryotic genomes

Background: Phylogenetic footprinting is an important computational technique for identifying cis-regulatory motifs in orthologous regulatory regions from multiple genomes, as motifs tend to evolve slower than their surrounding non-functional sequences. Its application, however, has several difficulties for optimizing the selection of orthologous data and reducing the false positives in motif p...

متن کامل

Network-based transcriptome analysis in salt tolerant and salt sensitive maize (Zea mays L.) genotypes

Identification of genes involved in salinity stress tolerance provides deeper insight into molecular mechanisms underlying salinity tolerance in maize. The present study was conducted in the faculty of agriculture of Urmia university, Iran, in 2018, with the aim of identifying genetic differences between two maize genotypes in tolerance to salinity stress, and the results of gene expression wer...

متن کامل

An integrated toolkit for accurate prediction and analysis of cis-regulatory motifs at a genome scale

MOTIVATION We present an integrated toolkit, BoBro2.0, for prediction and analysis of cis-regulatory motifs. This toolkit can (i) reliably identify statistically significant cis-regulatory motifs at a genome scale; (ii) accurately scan for all motif instances of a query motif in specified genomic regions using a novel method for P-value estimation; (iii) provide highly reliable comparisons and ...

متن کامل

Designing a Combined-fuzzy Methodology to Improve Organizational Diagnosis Process Effectiveness through Identification and Assessment of Effective Parameters

Organizational diagnosis is a systematic and scientific method to identify, categorize and single out the obstacles and their impact on organizational performance through interaction between internal and external views and preparation and setting up operational plans to solve them in the organization. Providing standard products and emphasizing on the financial measures do not guarantee the sur...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Bioinformatics

دوره 33 16  شماره 

صفحات  -

تاریخ انتشار 2017