The joint role of trimming and constraints in robust estimation for mixtures of Gaussian factor analyzers
نویسندگان
چکیده
Mixtures of Gaussian factors are powerful tools for modeling an unobserved heterogeneous population, offering at the same time dimension reduction and model-based clustering. The high prevalence of spurious solutions and the disturbing effects of outlying observations in maximum likelihood estimation may cause biased or misleading inferences. Restrictions for the component covariances are considered in order to avoid spurious solutions, and trimming is also adopted, to provide robustness against violations of the normality assumptions of the underlying latent factors. A detailed AECM algorithm for this new approach is presented. Simulation results and an application to the AIS dataset show the aim and effectiveness of the proposed methodology. c © 2015 Published by Elsevier Ltd.
منابع مشابه
A Robust Distributed Estimation Algorithm under Alpha-Stable Noise Condition
Robust adaptive estimation of unknown parameter has been an important issue in recent years for reliable operation in the distributed networks. The conventional adaptive estimation algorithms that rely on mean square error (MSE) criterion exhibit good performance in the presence of Gaussian noise, but their performance drastically decreases under impulsive noise. In this paper, we propose a rob...
متن کاملA mixture of generalized hyperbolic factor analyzers
The mixture of factor analyzers model, which has been used successfully for the model-based clustering of high-dimensional data, is extended to generalized hyperbolic mixtures. The development of a mixture of generalized hyperbolic factor analyzers is outlined, drawing upon the relationship with the generalized inverse Gaussian distribution. An alternating expectation-conditional maximization a...
متن کاملMixtures of skew-t factor analyzers
In this paper, we introduce a mixture of skew-t factor analyzers as well as a family of mixture models based thereon. The mixture of skew-t distributions model that we use arises as a limiting case of the mixture of generalized hyperbolic distributions. Like their Gaussian and t-distribution analogues, our mixture of skew-t factor analyzers are very well-suited to the model-based clustering of ...
متن کاملAdaptive Mixtures of Factor Analyzers
A mixture of factor analyzers is a semi-parametric density estimator that generalizes the well-known mixtures of Gaussians model by allowing each Gaussian in the mixture to be represented in a different lower-dimensional manifold. This paper presents a robust and parsimonious model selection algorithm for training a mixture of factor analyzers, carrying out simultaneous clustering and locally l...
متن کاملPermeability estimation from the joint use of stoneley wave velocity and support vector machine neural networks: a case study of the Cheshmeh Khush Field, South Iran
Accurate permeability estimation has always been a concern in determining flow units, assigning appropriate capillary pressure andrelative permeability curves to reservoir rock types, geological modeling, and dynamic simulation.Acoustic method can be used as analternative and effective tool for permeability determination. In this study, a four-step approach is proposed for permeability estimati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computational Statistics & Data Analysis
دوره 99 شماره
صفحات -
تاریخ انتشار 2016