On the dynamics of magnetorotational turbulent stresses
نویسنده
چکیده
The turbulent stresses that lead to angular momentum transport in accretion discs have often been treated as resulting from an isotropic effective viscosity, related to the pressure through the alpha parametrization of Shakura & Sunyaev. This simple approach may be adequate for the simplest aspects of accretion disc theory, and was necessitated historically by an incomplete understanding of the origin of the turbulence. More recently, Balbus & Hawley have shown that the magnetorotational instability provides a robust mechanism of generating turbulent Reynolds and Maxwell stresses in sufficiently ionized discs. The alpha viscosity model fails to describe numerous aspects of this process. This paper introduces a new analytical model that aims to represent more faithfully the dynamics of magnetorotational turbulent stresses and bridge the gap between analytical studies and numerical simulations. Covariant evolutionary equations for the mean Reynolds and Maxwell tensors are presented, which correctly include the linear interaction with the mean flow. Non-linear and dissipative effects, in the absence of an imposed magnetic flux and in the limit of large Reynolds number and magnetic Reynolds number, are modelled through five non-linear terms that represent known physical processes and are strongly constrained by symmetry properties and dimensional considerations. The resulting model explains the development of statistically steady, anisotropic turbulent stresses in the shearing sheet, a local representation of a differentially rotating disc, in agreement with numerical simulations. It also predicts that purely hydrodynamic turbulence is not sustained in a flow that adequately satisfies Rayleigh’s stability criterion. The model is usually formally hyperbolic and therefore ‘causal’, and guarantees the realizability of the stress tensors. It should be particularly useful in understanding the dynamics of warped, eccentric and tidally distorted discs, non-Keplerian accretion flows close to black holes, and a variety of time-dependent accretion phenomena.
منابع مشابه
The fundamental difference between shear alpha-viscosity and turbulent magnetorotational stresses
Numerical simulations of turbulent, magnetized, differentially rotating flows driven by the magnetorotational instability are often used to calculate the effective values of alpha viscosity that is invoked in analytical models of accretion discs. In this paper we use various dynamical models of turbulent magnetohydrodynamic stresses, as well as numerical simulations of shearing boxes, to show t...
متن کاملThe fundamental difference between alpha viscosity and turbulent magnetorotational stresses
Numerical simulations of turbulent, magnetized, differentially rotating flows driven by the magnetorotational instability are often used to calculate the effective values of alpha viscosity that is invoked in analytical models of accretion discs. In this paper we use various dynamical models of turbulent magnetohydrodynamic stresses as well as numerical simulations of shearing boxes to show tha...
متن کاملNumerical Simulation of Scaling Effect on Bubble Dynamics in a Turbulent Flow around a Hydrofoil
A Lagrangian-Eulerian numerical scheme for the investigation of bubble motion in turbulent flow is developed. The flow is analyzed in the Eulerian reference frame while the bubble motion is simulated in the Lagrangian one. Finite volume scheme is used, and SIMPLEC algorithm is utilized for the pressure and velocity linkage. The Reynolds stresses are modeled by the RSTM model of Launder. Upwind ...
متن کاملGlobal models of turbulence in protoplanetary disks I. A cylindrical potential on a Cartesian grid and transport of solids
Aims. We present global 3DMHD simulations of disks of gas and solids, aiming at developing models that can be used to study various scenarios of planet formation and planet-disk interaction in turbulent accretion disks. A second goal is to demonstrate that Cartesian codes are comparable to cylindrical and spherical ones in handling the magnetohydrodynamics of the disk simulations while offering...
متن کاملDust Diffusion in Protoplanetary Discs by Magnetorotational Turbulence
We measure the turbulent diffusion coefficient of dust grains embedded in magnetorotational turbulence in a protoplanetary disc directly from numerical simulations and compare it to the turbulent viscosity of the flow. The simulations are done in a local coordinate frame comoving with the gas in Keplerian rotation. Periodic boundary conditions are used in all directions, and vertical gravity is...
متن کامل