Learning Preference Models from Data: On the Problem of Label Ranking and Its Variants
نویسندگان
چکیده
The term “preference learning” refers to the application of machine learning methods for inducing preference models from empirical data. In the recent literature, corresponding problems appear in various guises. After a brief overview of the field, this work focuses on a particular learning scenario called label ranking, where the problem is to learn a mapping from instances to rankings over a finite number of labels. Our approach for learning such a ranking function, called ranking by pairwise comparison (RPC), first induces a binary preference relation from suitable training data, using a natural extension of pairwise classification. A ranking is then derived from this relation by means of a ranking procedure. This paper elaborates on a key advantage of such an approach, namely the fact that our learner can be adapted to different loss functions by using different ranking procedures on the same underlying order relations. In particular, the Spearman rank correlation is minimized by using a simple weighted voting procedure. Moreover, we discuss a loss function suitable for settings where candidate labels must be tested successively until a target label is found. In this context, we propose the idea of “empirical conditioning” of class probabilities. A related ranking procedure, called “ranking through iterated choice”, is investigated experimentally.
منابع مشابه
Dyad Ranking Using a Bilinear Plackett-Luce Model
Preference learning is an emerging subfield of machine learning, which deals with the induction of preference models from observed or revealed preference information [2]. Such models are typically used for prediction purposes, for example, to predict context-dependent preferences of individuals on various choice alternatives. Depending on the representation of preferences, individuals, alternat...
متن کاملLabel Ranking by Learning Pairwise Preferences Label Ranking by Learning Pairwise Preferences
Preference learning is a challenging problem that involves the prediction of complex structures, such as weak or partial order relations. In the recent literature, the problem appears in many different guises, which we will first put into a coherent framework. This work then focuses on a particular learning scenario called label ranking, where the problem is to learn a mapping from instances to...
متن کاملAn Effective Approach for Robust Metric Learning in the Presence of Label Noise
Many algorithms in machine learning, pattern recognition, and data mining are based on a similarity/distance measure. For example, the kNN classifier and clustering algorithms such as k-means require a similarity/distance function. Also, in Content-Based Information Retrieval (CBIR) systems, we need to rank the retrieved objects based on the similarity to the query. As generic measures such as ...
متن کاملLabel ranking by learning pairwise preferences
Preference learning is a challenging problem that involves the prediction of complex structures, such as weak or partial order relations, rather than single values. In the recent literature, the problem appears in many different guises, which we will first put into a coherent framework. This work then focuses on a particular learning scenario called label ranking, where the problem is to learn ...
متن کاملLearning from Label Preferences
In this paper, we review the framework of learning (from) label preferences, a particular instance of preference learning. Following an introduction to the learning setting, we particularly focus on our own work, which addresses this problem via the learning by pairwise comparison paradigm. From a machine learning point of view, learning by pairwise comparison is especially appealing as it deco...
متن کامل