Recognition and invasion of human erythrocytes by malarial parasites: contribution of sialoglycoproteins to attachment and host specificity
نویسندگان
چکیده
The receptivity of human erythrocytes to invasion by Plasmodium falciparum merozoites can be decreased by neuraminidase or trypsin treatment, an observation that supports a role for the erythrocyte sialoglycoproteins (glycophorins) in invasion. We have found that alpha 1-acid glycoprotein (AGP), added to in vitro cultures, can restore invasion of enzyme-treated human erythrocytes. AGP is structurally different from the glycophorins although it does carry 12% sialic acid. Its ability to restore receptivity to desialylated cells is dependent on its sialic acid complement, its concentration, and its binding to the erythrocyte surface. We present evidence that AGP forms a bridge between the merozoite and the enzyme-treated erythrocyte that allows the stronger and more complex interactions of invasion to proceed. We suggest that the glycophorins play the same role on the surface of the intact erythrocyte.
منابع مشابه
Inhibitory effects of erythrocyte membrane proteins on the in vitro invasion of the human malarial parasite (Plasmodium falciparum) into its host cell
The intracellular development of the erythrocytic stage of the malarial parasite (merozoite) is initiated by the attachment of the parasite to the erythrocyte surface. This paper describes an assay system to investigate Plasmodium falciparum merozoite entry into the host cell and reports on three observations regarding this interaction. (a) Merozoites do not invade human erythrocytes treated wi...
متن کاملInteraction between cytochalasin B-treated malarial parasites and erythrocytes. Attachment and junction formation
We have previously demonstrated that invasion of erythrocytes (RBCs) by malaria merozoites follows a sequence: recognition and attachment in an apical orientation associated with widespread deformation of the RBC, junction formation, movement of the junction around the merozoite that brings the merozoite into the invaginated RBC membrane, and sealing of the membrane. In the present paper, we de...
متن کاملInsights into the invasion biology of Plasmodium vivax
Plasmodium vivax is the most widely distributed human malaria parasite outside sub Sahara regions of Africa causing huge morbidity and occasionally being severe and fatal (Kochar et al., 2005; Tjitra et al., 2008). Invasion of host erythrocytes is essential for development of disease and the process varies greatly among different malaria parasites. Merozoites of P. vivax and P. berghei (a roden...
متن کاملErythrocyte invasion phenotypes of Plasmodium falciparum in The Gambia.
In vitro experimentation with Plasmodium falciparum has determined that a number of different receptor-ligand interactions are involved in the invasion of erythrocytes. Most culture-adapted parasite isolates use a mechanism of invasion that depends primarily on the erythrocyte sialoglycoprotein glycophorin A (GYPA) and erythrocyte-binding antigen 175 (EBA-175) of the parasite blood-stage merozo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of Cell Biology
دوره 98 شماره
صفحات -
تاریخ انتشار 1984