Borrelia burgdorferi swims with a planar waveform similar to that of eukaryotic flagella.

نویسندگان

  • S F Goldstein
  • N W Charon
  • J A Kreiling
چکیده

Borrelia burgdorferi is a motile spirochete with multiple internal periplasmic flagella (PFs) attached near each end of the cell cylinder; these PFs overlap in the cell center. We analyzed the shape and motion of wild type and PF-deficient mutants using both photomicrography and video microscopy. We found that swimming cells resembled the dynamic movements of eukaryotic flagella. In contrast to helically shaped spirochetes, which propagate spiral waves, translating B. burgdorferi swam with a planar waveform with occasional axial twists; waves had a peak-to-peak amplitude of 0.85 micron and a wavelength of 3.19 microns. Planar waves began full-sized at the anterior end and propagated toward the back end of the cell. Concomitantly, these waves gyrated counter-clockwise as viewed from the posterior end along the cell axis. In nontranslating cells, wave propagation ceased. Either the waveform of nontranslating cells resembled the translating form, or the cells became markedly contorted. Cells of the PF-deficient mutant isolated by Sadziene et al. [Sadziene, A., Thomas, D. D., Bundoc, V. G., Holt, S. C. & Barbour, A. G. (1991) J. Clin. Invest. 88, 82-92] were found to be relatively straight. The results suggest that the shape of B. burgdorferi is dictated by interactions between the cell body and the PFs. In addition, the PFs from opposite ends of the cell are believed to interact with one another so that during the markedly distorted nontranslational form, the PFs from opposite ends rotate in opposing directions around one another, causing the cell to bend.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Swimming dynamics of the lyme disease spirochete.

The Lyme disease spirochete, Borrelia burgdorferi, swims by undulating its cell body in the form of a traveling flat wave, a process driven by rotating internal flagella. We study B. burgdorferi's swimming by treating the cell body and flagella as linearly elastic filaments. The dynamics of the cell are then determined from the balance between elastic and resistive forces and moments. We find t...

متن کامل

The elastic basis for the shape of Borrelia burgdorferi.

The mechanisms that determine bacterial shape are in many ways poorly understood. A prime example is the Lyme disease spirochete, Borrelia burgdorferi (B. burgdorferi), which mechanically couples its motility organelles, helical flagella, to its rod-shaped cell body, producing a striking flat-wave morphology. A mathematical model is developed here that accounts for the elastic coupling of the f...

متن کامل

Expression and Purification of Recombinant Outer Surface Protein D of Borrelia burgdorferi

To carry out the immunological experiments on the serum of Multiple Sclerosis (MS) patients, based on a correlation between Borrelia burgdorferi infection and contracting MS autoimmune disease the outer surface protein D (OspD) of the bacterium was expressed and purified. A clone containing the OspD gene in pET11a expression vector under the control of T7 promoter was transformed to the bacteri...

متن کامل

Identification of Two Epitopes on the Outer Surface Protein A of the Lyme Disease Spirochete Borrelia burgdorferi

A murine IgM monoclonal antibody (MA-2C6) with κ-light chains directed against an antigenic determinant of outer surface protein A (OspA) of the Lyme disease spirochete, Borreliaburgdorferi, is produced. This antibody could bind specifically to OspA antigen of several isolates of B. burgdorferi, but not to the non-Lyme disease bacteria such as T. pallidum and B. hermsii. Antibody MA-2C6 was pur...

متن کامل

Borrelia burgdorferi periplasmic flagella have both skeletal and motility functions.

Bacterial shape usually is dictated by the peptidoglycan layer of the cell wall. In this paper, we show that the morphology of the Lyme disease spirochete Borrelia burgdorferi is the result of a complex interaction between the cell cylinder and the internal periplasmic flagella. B. burgdorferi has a bundle of 7-11 helically shaped periplasmic flagella attached at each end of the cell cylinder a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 91 8  شماره 

صفحات  -

تاریخ انتشار 1994