Proposed habitats of early tetrapods: gills, kidneys, and the water-land transition

نویسندگان

  • CHRISTINE M. JANIS
  • COLLEEN FARMER
چکیده

Recent finds of early tetrapods have established that the most primitive form, Acanthostega, retained internal gills and other fish-like features; this has led to the conclusion that it was a primarily aquatic animal. Other Late Devonian tetrapods, such as Ichthyostega and Tilerpeton, provide no evidence of internal gills, but have also been interpreted as inhabiting an aquatic environment. The probable aquatic habits of a diversity of Devonian tetrapods has led to the suggestion that the entire early tetrapod radiation may have been an aquatic one, with terrestriality having evolved in later forms. However, consideration of the physiology of living amphibious vertebrates suggests that this scenario is unlikely. The use of the ,$Is for the excretion of carbon dioxide and ammonia appears to be a fundamental feature of all primarily aquatic vertebrates. No living fish loses its internal $Is, even if it excretes a significant portion of its nitrogenous waste as urea via the kidney in the water. Gills are simply too valuable to be lost by an aquatic animal, even in those air-breathing fishes that no longer use the gills for oxygen uptake. We suggest that the apparent loss of the gills in tetrapods more derived than Acanthostega signals their descent from a more terrestrial phase in tetrapod evolution, following the primary assumption by the kidney of the excretion of nitrogenous wastes. Without this new role of the kidney, loss of the gdls would have been impossible. With this new kidney role, loss of the gills may have been advantageous in reducing desiccation on land.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Vertebrate land invasions-past, present, and future: an introduction to the symposium.

The transition from aquatic to terrestrial habitats was a seminal event in vertebrate evolution because it precipitated a sudden radiation of species as new land animals diversified in response to novel physical and biological conditions. However, the first stages of this environmental transition presented numerous challenges to ancestrally aquatic organisms, and necessitated changes in the mor...

متن کامل

Hearing of the African lungfish (Protopterus annectens) suggests underwater pressure detection and rudimentary aerial hearing in early tetrapods.

In the transition from an aquatic to a terrestrial lifestyle, vertebrate auditory systems have undergone major changes while adapting to aerial hearing. Lungfish are the closest living relatives of tetrapods and their auditory system may therefore be a suitable model of the auditory systems of early tetrapods such as Acanthostega. Therefore, experimental studies on the hearing capabilities of l...

متن کامل

Radiation and functional diversification of alpha keratins during early vertebrate evolution.

The conquest of land was arguably one of the most fundamental ecological transitions in vertebrates and entailed significant changes in skin structure and appendages to cope with the new environment. In extant tetrapods, the rigidity of the integument is largely created by type I and type II keratins, which are structural proteins essential in forming a strong cytoplasmic network. It is expecte...

متن کامل

Hearing in the African lungfish (Protopterus annectens): pre-adaptation to pressure hearing in tetrapods?

Lungfishes are the closest living relatives of the tetrapods, and the ear of recent lungfishes resembles the tetrapod ear more than the ear of ray-finned fishes and is therefore of interest for understanding the evolution of hearing in the early tetrapods. The water-to-land transition resulted in major changes in the tetrapod ear associated with the detection of air-borne sound pressure, as evi...

متن کامل

By Jennifer a . Clack Getting a Leg up on Land

light on the evolution of four-limbed animals from fish in the a lmost four billion years since life on earth oozed into existence, evolution has generated some marvelous metamorphoses. One of the most spectacular is surely that which produced terrestrial creatures bearing limbs, fingers and toes from water-bound fish with fins. Today this group, the tetrapods, encompasses everything from birds...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009