Truncated Total Least Squares Method with a Practical Truncation Parameter Choice Scheme for Bioluminescence Tomography Inverse Problem
نویسندگان
چکیده
In bioluminescence tomography (BLT), reconstruction of internal bioluminescent source distribution from the surface optical signals is an ill-posed inverse problem. In real BLT experiment, apart from the measurement noise, the system errors caused by geometry mismatch, numerical discretization, and optical modeling approximations are also inevitable, which may lead to large errors in the reconstruction results. Most regularization techniques such as Tikhonov method only consider measurement noise, whereas the influences of system errors have not been investigated. In this paper, the truncated total least squares method (TTLS) is introduced into BLT reconstruction, in which both system errors and measurement noise are taken into account. Based on the modified generalized cross validation (MGCV) criterion and residual error minimization, a practical parameter-choice scheme referred to as improved GCV (IGCV) is proposed for TTLS. Numerical simulations with different noise levels and physical experiments demonstrate the effectiveness and potential of TTLS combined with IGCV for solving the BLT inverse problem.
منابع مشابه
Level choice in truncated total least squares
The method of truncated total least squares [2] is an alternative to the classical truncated singular value decomposition used for the regularization of ill-conditioned linear systems Ax ≈ b [3]. Truncation methods aim at limiting the contribution of noise or rounding errors by cutting off a certain number of terms in an expansion such as the singular value decomposition. To this end a truncati...
متن کاملLarge-scale Inversion of Magnetic Data Using Golub-Kahan Bidiagonalization with Truncated Generalized Cross Validation for Regularization Parameter Estimation
In this paper a fast method for large-scale sparse inversion of magnetic data is considered. The L1-norm stabilizer is used to generate models with sharp and distinct interfaces. To deal with the non-linearity introduced by the L1-norm, a model-space iteratively reweighted least squares algorithm is used. The original model matrix is factorized using the Golub-Kahan bidiagonalization that proje...
متن کاملLeast – Squares Method For Estimating Diffusion Coefficient
Abstract: Determination of the diffusion coefficient on the base of solution of a linear inverse problem of the parameter estimation using the Least-square method is presented in this research. For this propose a set of temperature measurements at a single sensor location inside the heat conducting body was considered. The corresponding direct problem was then solved by the application of the ...
متن کاملLEAST – SQUARES METHOD FOR ESTIMATING DIFFUSION COEFFICIENT
Determining the diffusion coefficient based on the solution of the linear inverse problem of the parameter estimation by using the Least-square method is presented. A set of temperature measurements at a single sensor location inside the heat conducting body is required. The corresponding direct problem will be solved by an application of the heat fundamental solution.
متن کاملΧ Tests for the Choice of the Regularization Parameter in Nonlinear Inverse Problems∗
We address discrete nonlinear inverse problems with weighted least squares and Tikhonov regularization. Regularization is a way to add more information to the problem when it is ill-posed or ill-conditioned. However, it is still an open question as to how to weight this information. The discrepancy principle considers the residual norm to determine the regularization weight or parameter, while ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 2010 شماره
صفحات -
تاریخ انتشار 2010