Quantitative diffusion tensor imaging in cerebral palsy due to periventricular white matter injury.
نویسندگان
چکیده
Periventricular white matter injury (PWI) is a major form of brain injury observed in congenital hemiparesis. The aim of this study is to determine the usefulness of diffusion tensor imaging (DTI) and fibre tracking in delineating the primary and secondary degenerative changes in cerebral white matter and deep grey matter in patients with spastic cerebral palsy due to PWI and to look for any possible reorganization of the axonal architecture. Five hemiparetic cerebral palsy patients (median age 14 years) with known PWI were prospectively studied with DTI of the brain at 1.5T and quantitatively compared with five age and sex matched controls. Fibre tracts for various corticofugal, thalamocortical and association tracts were generated and analysed for the DTI fibre count and for diffusion parameters. A region of interest based analysis was performed for the directionally averaged mean diffusivity (D(av)) and fractional anisotropy (FA) values in various white matter locations in the brain and the brainstem and in the deep grey matter nuclei. Group statistics were performed for these parameters using Mann-Whitney U-test comparing the affected sides in patients with either side in controls and the unaffected side in hemiparetics. There was significant reduction in DTI fibre count on the lesional side involving corticospinal tract (CST), corticobulbar tract (CBT) and superior thalamic radiation in the patient group compared with controls. Also there was an increase in DTI fibre count in the unaffected side of the hemiparetic patients in CST and CBT, which reached statistical significance only in CBT. The corpus callosum, cingulum, superior longitudinal fasciculus and middle cerebellar peduncle failed to show any significant change. ROI measurements on the primary site of white matter lesion and the thalamus revealed a significant increase in D(av) and decrease in FA, suggesting primary degeneration. The CST in the brainstem, the body of corpus callosum and the head of caudate and lentiform nuclei showed features of secondary degeneration on the affected side. The CST on the unaffected side of hemiparetics was found to have a significant decrease in D(av) and an increase in FA. Thus the degeneration of various motor and sensory pathways, as well as deep grey matter structures, appears to be important in determining the pathophysiological mechanisms in patients with congenital PWI. Also evidence suggesting the reorganization of sensorimotor tracts in the unaffected side of spastic hemiparetic patients was noted.
منابع مشابه
Diffusion tensor imaging in children with periventricular leukomalacia: variability of injuries to white matter tracts.
BACKGROUND AND PURPOSE Conventional MR imaging shows evidence of brain injury and/or maldevelopment in 70%-90% of children with cerebral palsy (CP), though its capability to identify specific white matter tract injury is limited. The great variability of white matter lesions in CP already demonstrated by postmortem studies is thought to be one of the reasons why response to treatment is so vari...
متن کاملEvaluation of White Matter Tracts in Autistic Individuals: A Review of Diffusion Tensor Imaging Studies
Introduction: Many cognitive and social deficits in autism are caused by abnormal functional connections between brain networks, which are manifested by impaired integrity of white matter tracts. White matter tracts are like the "highways" of the brain, which allow fast and efficient communication in different areas of the brain. The purpose of this article is to review the results of autism st...
متن کاملRegional vulnerability of longitudinal cortical association connectivity
a r t i c l e i n f o Keywords: Cerebral palsy Periventricular leukomalacia Diffusion tensor imaging Probabilistic tractography Visual cortical association fibers Principal component analysis Preterm born children with spastic diplegia type of cerebral palsy and white matter injury or periventricular leukomalacia (PVL), are known to have motor, visual and cognitive impairments. Most diffusion t...
متن کاملThe Benefits and implementations of Diffusion tensor imaging and Neural Fiber Tractography in Brain Surgery
Background and Aim: The methods for detecting brain activation with fMRI, MRI provides a way to measure the anatomical connections which enable lightning-fast communication among neurons that specialize in different kinds of brain functions. Diffusion tensor imaging is able to measure the direction of bundles of the axonal fibers which are all aligned. Besides mapping white matter fiber tracts,...
متن کاملDiffusion tensor imaging of brain development.
Understanding early human brain development is of great clinical importance, as many neurological and neurobehavioral disorders have their origin in early structural and functional cerebral organization and maturation. Diffusion tensor imaging (DTI), a recent magnetic resonance (MR) modality which assesses water diffusion in biological tissues at a microstructural level, has revealed a powerful...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Brain : a journal of neurology
دوره 128 Pt 11 شماره
صفحات -
تاریخ انتشار 2005