Photo-Oxidation of Water on Defective Hematite(0001)

نویسندگان

  • Manh-Thuong Nguyen
  • Simone Piccinin
  • Nicola Seriani
  • Ralph Gebauer
چکیده

Defects are unavoidable and usually originate exotic properties in realistic materials. One of the most fundamental defect-induced properties of a solid surface is its reactivity to adsorbed species. Defects in anodes of electrochemical cells for water splitting could therefore play a critical role in the interatomic interactions at the solvent/solid interfaces and hence in determining the catalytic properties of these materials. Here, by means of density-functional calculations at the PBE+U level, we investigate photo-oxidation of water on defective hematite(0001) substrates which accommodate intrinsic and extrinsic point defects, namely, Fe and O vacancies, as well as N substitutional impurities. In this work, the water oxidation process is assumed to be driven by the redox potential for photogenerated holes with respect to the normal hydrogen electrode. Although iron vacancies do not reduce the overpotential, oxygen vacancies and N impurities lower the overpotential by 0.2−0.3 V compared to the ideal case. These changes are attributed to the coordination loss or the substitution-induced charge states of surface atoms that modify the electronic structure of the surface, thus affecting the relative stability of adsorbed intermediates.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The (0001) surfaces of α-Fe2O3 nanocrystals are preferentially activated for water oxidation by Ni doping.

Photoelectrochemical water oxidation on hematite has been extensively studied, yet the relationship between the various facets exposed, heteroatom doping, and associated electrocatalytic activity has not been adequately explored. Here, hematite nanocrystals were synthesized with continuous tuning of the aspect-ratio and fine control of the surface area ratio of the (0001) facet with respect to ...

متن کامل

A mechanistic study into the catalytic effect of Ni(OH)2 on hematite for photoelectrochemical water oxidation.

We report a mechanistic study of the catalytic effect of Ni(OH)2 on hematite nanowires for photoelectrochemical water oxidation. Ni compounds have been shown to be good catalysts for electrochemical and photoelectrochemical water oxidation. While we also observed improved photocurrents for Ni-catalyst decorated hematite photoanodes, we found that the photocurrents decay rapidly, indicating the ...

متن کامل

Photo-driven oxidation of water on α-Fe2O3 surfaces: an ab initio study.

Adopting the theoretical scheme developed by the Nørskov group [see, for example, Nørskov et al., J. Phys. Chem. B 108, 17886 (2004)], we conducted a density functional theory study of photo-driven oxidation processes of water on various terminations of the clean hematite (α-Fe2O3) (0001) surface, explicitly taking into account the strong correlation among the 3d states of iron through the Hubb...

متن کامل

Hematite-based photo-oxidation of water using transparent distributed current collectors.

High specific surface area transparent and conducting frameworks, fabricated by atomic layer deposition (ALD), were used as scaffolds for fabrication of equally high area, ALD-formed hematite structures for photo-oxidation of water to dioxygen. The frameworks offer high transparency to visible light and robust conductivity under harsh annealing and oxidizing conditions. Furthermore, they also m...

متن کامل

Water oxidation on pure and doped hematite (0001) surfaces: prediction of Co and Ni as effective dopants for electrocatalysis.

In photoelectrochemical cells, sunlight may be converted into chemical energy by splitting water into hydrogen and oxygen molecules. Hematite (α-Fe(2)O(3)) is a promising photoanode material for the water oxidation component of this process. Numerous research groups have attempted to improve hematite's photocatalytic efficiency despite a lack of foundational knowledge regarding its surface reac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014