Performance Evaluation of Algorithms in Lung IMRT: A comparison of Monte Carlo, Pencil Beam, Superposition, Fast Superposition and Convolution Algorithms
نویسندگان
چکیده
BACKGROUND Inclusion of inhomogeneity corrections in intensity modulated small fields always makes conformal irradiation of lung tumor very complicated in accurate dose delivery. OBJECTIVE In the present study, the performance of five algorithms via Monte Carlo, Pencil Beam, Convolution, Fast Superposition and Superposition were evaluated in lung cancer Intensity Modulated Radiotherapy planning. MATERIALS AND METHODS Treatment plans for ten lung cancer patients previously planned on Monte Carlo algorithm were re-planned using same treatment planning indices (gantry angel, rank, power etc.) in other four algorithms. RESULTS The values of radiotherapy planning parameters such as Mean dose, volume of 95% isodose line, Conformity Index, Homogeneity Index for target, Maximum dose, Mean dose; %Volume receiving 20Gy or more by contralateral lung; % volume receiving 30 Gy or more; % volume receiving 25 Gy or more, Mean dose received by heart; %volume receiving 35Gy or more; %volume receiving 50Gy or more, Mean dose to Easophagous; % Volume receiving 45Gy or more, Maximum dose received by Spinal cord and Total monitor unit, Volume of 50 % isodose lines were recorded for all ten patients. Performance of different algorithms was also evaluated statistically. CONCLUSION MC and PB algorithms found better as for tumor coverage, dose distribution homogeneity in Planning Target Volume and minimal dose to organ at risks are concerned. Superposition algorithms found to be better than convolution and fast superposition. In the case of tumors located centrally, it is recommended to use Monte Carlo algorithms for the optimal use of radiotherapy.
منابع مشابه
Evaluating Performance of Algorithms in Lung IMRT: A Comparison of Monte Carlo, Pencil Beam, Superposition, Fast Superposition and Convolution Algorithms
Background: Inclusion of inhomogeneity corrections in intensity modulated small fields always makes conformal irradiation of lung tumor very complicated in accurate dose delivery.Objective: In the present study, the performance of five algorithms via Monte Carlo, Pencil Beam, Convolution, Fast Superposition and Superposition were evaluated in lung cancer Intensity Modulated Radiotherapy plannin...
متن کاملHalf Beam Block Technique in Breast Cancer and It’s Dosimetric Analysis using different Algorithms
Introduction: Single isocentre half-beam block (HBB) technique permits the avoidance of hot and cold spots. This technique is very useful in sparing the underlying ipsilateral lung and heart, if the left breast is treated. The major advantage of this technique is that it facilitates the complete sparing of both contralateral breast and lung. Regarding this, the present study aimed to analyse th...
متن کاملDose Calculations for Lung Inhomogeneity in High-Energy Photon Beams and Small Beamlets: A Comparison between XiO and TiGRT Treatment Planning Systems and MCNPX Monte Carlo Code
Introduction Radiotherapy with small fields is used widely in newly developed techniques. Additionally, dose calculation accuracy of treatment planning systems in small fields plays a crucial role in treatment outcome. In the present study, dose calculation accuracy of two commercial treatment planning systems was evaluated against Monte Carlo method. Materials and Methods Siemens Once or linea...
متن کاملEvaluation of the dose calculation accuracy in intensity‐modulated radiation therapy for mesothelioma, focusing on low doses to the contralateral lung
This study compares Monte Carlo (MC) with conventional treatment planning system (TPS) calculations. The EGS4nrc MC code, BEAMnrc, was commissioned to simulate a Varian 21Ex Linac. The accuracy of the simulations, including points blocked by the jaws, was evaluated by comparing MC with ion chamber and MOSFET measurements. Eight mesothelioma IMRT cases were planned using Eclipse (pencil beam and...
متن کاملبررسی میزان دقت الگوریتمهای سیستم طراحی درمان رادیوتراپی در پیشبینی دز پروتز مفصل ران با استفاده از شبیه سازی مونتکارلو
Abstract Background : Beam-hardening artifacts in CT image set of patient with a hip prosthesis cause difference between dose distributions resulted by treatment planning system (TPS) algorithms and actual dose distribution in patient body. In this study, dose distributions of TPS algorithms were compared with the results of Monte Carlo simulations of Titanium and Steal as a h...
متن کامل