Lecture 2: Geometric Embeddings (continued) 2 Lowerbound for Embedding into 2

نویسندگان

  • Sanjeev Arora
  • ScribeMichael Dinitz
چکیده

In the last lecture we defined metric spaces, normed spaces, and considered the distortion resulting from certain embeddings. In particular, we proved that l1 norms cannot always be embedded isometrically into l2 by considering a specific four-point l1 norm and showing that it requires at least √ 2 distortion. Today’s lecture further explores the 1 norm. We see a couple of interesting examples of 1 spaces. We try to understand the distortion required to embed 1 into 2. We also see that this apparently simple norm (“Manhattan distance”) is computationally very interesting. We will explore this further in future lectures.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Valiant Metric Embeddings , Dimension Reduction

In the previous lecture notes, we saw that any metric (X, d) with |X| = n can be embedded into R 2 n) under any the `1 metric (actually, the same embedding works for any `p metic), with distortion O(log n). Here, we describe an extremely useful approach for reducing the dimensionality of a Euclidean (`2) metric, while incurring very little distortion. Such dimension reduction is useful for a nu...

متن کامل

Quadratic embeddings

The quadratic Veronese embedding ρ maps the point set P of PG(n, F ) into the point set of PG( (n+2 2 ) − 1, F ) (F a commutative field) and has the following well-known property: If M ⊂ P, then the intersection of all quadrics containing M is the inverse image of the linear closure of Mρ. In other words, ρ transforms the closure from quadratic into linear. In this paper we use this property to...

متن کامل

Envelopes of Geometric Lattices

A categorical embedding theorem is proved for geometric lattices. This states roughly that, if one wants to consider only those embeddings into pro-jective spaces having a suitable universal property, then the existence of such an embedding can be checked by seeing whether corresponding properties hold for many small intervals. Tutte's embedding theorem for binary geometric lattices is a conseq...

متن کامل

Geometric complexity of embeddings in ${\mathbb R}^d$

Given a simplicial complex K , we consider several notions of geometric complexity of embeddings of K in a Euclidean space R : thickness, distortion, and refinement complexity (the minimal number of simplices needed for a PL embedding). We show that any n-complex with N simplices which topologically embeds in R , n > 2, can be PL embedded in R with refinement complexity O(e 4+ǫ ). Families of s...

متن کامل

DISCRETE RIESZ TRANSFORMS AND SHARP METRIC Xp INEQUALITIES

For p ∈ [2,∞) the metric Xp inequality with sharp scaling parameter is proven here to hold true in Lp. The geometric consequences of this result include the following sharp statements about embeddings of Lq into Lp when 2 < q < p <∞: the maximal θ ∈ (0, 1] for which Lq admits a bi-θ-Hölder embedding into Lp equals q/p, and for m,n ∈ N the smallest possible bi-Lipschitz distortion of any embeddi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005