Imposing pseudocompact group topologies on Abelian groups

نویسندگان

  • Dieter Remus Hannover
  • D. Remus
چکیده

The least cardinal λ such that some (equivalently: every) compact group with weight α admits a dense, pseudocompact subgroup of cardinality λ is denoted by m(α). Clearly, m(α) ≤ 2. We show: Theorem 3.3. Among groups of cardinality γ, the group ⊕γQ serves as a “test space” for the availability of a pseudocompact group topology in this sense: If m(α) ≤ γ ≤ 2 then ⊕γQ admits a (necessarily connected) pseudocompact group topology of weight α ≥ ω (and also a pseudocompact group topology of weight log γ). Theorem 4.12. Let G be Abelian with |G| = γ. If either m(α) ≤ α and m(α) ≤ r0(G) ≤ γ ≤ 2, or α > ω and α ≤ r0(G) ≤ 2, then G admits a pseudocompact group topology of weight α. Theorem 4.15. Every connected , pseudocompact Abelian group G with wG = α ≥ ω satisfies r0(G) ≥ m(α). Theorem 5.2(b). If G is divisible Abelian with 2r0(G) ≤ γ, then G admits at most 2-many pseudocompact group topologies. Theorem 6.2. Let β = α or β = 2 with β ≥ α, and let β ≤ γ < κ ≤ 2 . Then both ⊕γQ and the free Abelian group on γ-many generators admit exactly 2-many pseudocompact group topologies of weight κ. Of these, some κ+-many form a chain and some 2-many form an anti-chain. 1991 Mathematics Subject Classification: Primary 54A05; Secondary 20K45, 22C05.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the supremum of the pseudocompact group topologies

P is the class of pseudocompact Hausdorff topological groups, and P′ is the class of groups which admit a topology T such that (G,T ) ∈ P. It is known that every G= (G,T ) ∈ P is totally bounded, so for G ∈ P′ the supremum T ∨(G) of all pseudocompact group topologies on G and the supremum T #(G) of all totally bounded group topologies on G satisfy T ∨ ⊆ T #. The authors conjecture for abelian G...

متن کامل

Pseudocompact Group Topologies with No Infinite Compact Subsets

We show that every Abelian group satisfying a mild cardinal inequality admits a pseudocompact group topology from which all countable subgroups inherit the maximal totally bounded topology (we say that such a topology satisfies property ♯). This criterion is used in conjunction with an analysis of the algebraic structure of pseudocompact groups to obtain, under the Generalized Continuum Hypothe...

متن کامل

Extremal pseudocompact Abelian groups : A unified treatment

The authors have shown [Proc. Amer. Math. Soc. 135 (2007), 4039– 4044] that every nonmetrizable, pseudocompact abelian group has both a proper dense pseudocompact subgroup and a strictly finer pseudocompact group topology. Here they give a comprehensive, direct and self-contained proof of this result.

متن کامل

Extremal Pseudocompact Abelian Groups Are Compact Metrizable

Every pseudocompact Abelian group of uncountable weight has both a proper dense pseudocompact subgroup and a strictly finer pseudocompact group topology.

متن کامل

Non-Abelian Pseudocompact Groups

Here are three recently-established theorems from the literature. (A) (2006) Every non-metrizable compact abelian group K has 2|K|-many proper dense pseudocompact subgroups. (B) (2003) Every non-metrizable compact abelian group K admits 22 |K| -many strictly finer pseudocompact topological group refinements. (C) (2007) Every non-metrizable pseudocompact abelian group has a proper dense pseudoco...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008