Asymmetry-induced electric current rectification in permselective systems.

نویسندگان

  • Yoav Green
  • Yaron Edri
  • Gilad Yossifon
چکیده

For a symmetric ion permselective system, in terms of geometry and bulk concentrations, the system response is also symmetric under opposite electric field polarity. In this work we derive an analytical solution for the concentration distribution, electric potential, and current-voltage response for a four-layered system comprised of two microchambers connected by two permselective regions of varying properties. It is shown that any additional asymmetry in the system, in terms of the geometry, bulk concentration, or surface charge property of the permselective regions, results in current rectification. Our work is divided into two parts: when both permselective regions have the same surface charge sign and the case of opposite signs. For the same sign case we are able to show that the system behaves as a dialytic battery while accounting for field-focusing effects. For the case of opposite signs (i.e., bipolar membrane), our system exhibits the behavior of a bipolar diode where the magnitude of the rectification can be of order 10^{2}-10^{3}.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of geometry on concentration polarization in realistic heterogeneous permselective systems.

This study extends previous analytical solutions of concentration polarization occurring solely in the depleted region, to the more realistic geometry consisting of a three-dimensional (3D) heterogeneous ion-permselective medium connecting two opposite microchambers (i.e., a three-layer system). Under the local electroneutrality approximation, the separation of variable methods is used to deriv...

متن کامل

Graphene-Based Planar Nanofluidic Rectifiers

Structurally symmetric two-dimensional multilayered graphene oxide films, which facilitate ion transport through “nanochannels” comprising the interstitial spaces between each stacked sheet within the film, are for the first time shown to exhibit peculiar ion current rectification and nonlinear current− voltage characteristics below a critical electrolyte concentration when the interstitial spa...

متن کامل

Rectification in Graphene Self-Switching Nanodiode Using Side Gates Doping

The electrical properties and rectification behavior of the graphene self-switching diodes by side gates doping with nitrogen and boron atoms were investigated using density functional tight-binding method. The devices gates doping changes the electrical conductivity of the side gates and the semiconductor channel nanoribbons. As a result, the threshold voltage value under the forward bias is s...

متن کامل

Generation of DC electric fields due to vortex rectification in superconducting films

The introduction of the manuscript reviews different mechanisms of generation of permanent electric fields by AC driven vortex lattices in type-II superconductors due to artificial symmetry breaking. The second part shows that superconducting Pb and Nb films (strips or crosses) with or without symmetric periodic pinning centers, subject to a magnetic field perpendicular to the film plane, also ...

متن کامل

How the asymmetry of internal potential influences the shape of I-V characteristic of nanochannels.

Ion transport in biological and synthetic nanochannels is characterized by such phenomena as ion current fluctuations, rectification, and pumping. Recently, it has been shown that the nanofabricated synthetic pores could be considered as analogous to biological channels with respect to their transport characteristics [P. Yu. Apel et al., Nucl. Instrum. Methods Phys. Res. B 184, 337 (2001); Z. S...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 92 3  شماره 

صفحات  -

تاریخ انتشار 2015