Large-scale Topology Optimization Using Parameterized Boolean Networks
نویسندگان
چکیده
A novel parameterization concept for structural truss topology optimization is presented in this article that enables the use of evolutionary algorithms in design of large-scale structures. The representational power of Boolean networks is used here to parameterize truss topology. A genetic algorithm then operates on parameters that govern the generation of truss topologies using this random network instead of operating directly on design variables. A genetic algorithm implementation is also presented that is congruent with the local rule application of the random network. The primary advantage of using a Boolean random network representation is that a relatively large number of ground structure nodes can be used, enabling successful exploration of a large-scale design space. In the classical binary representation of ground structures, the number of optimization variables increases quadratically with the number of nodes, restricting the maximum number of nodes that can be considered using a ground structure approach. The Boolean random network representation proposed here allows for the exploration of the entire topology space in a systematic way using only a linear number of variables. The number of nodes in the design domain, therefore, can be increased significantly. Truss member geometry and size optimization is performed here in a nested manner where an inner loop size optimization problem is solved for every candidate topology using sequential linear programming with move-limits. The Boolean random network and nested inner-loop optimization allows for the concurrent optimization of truss topology, geom∗Graduate Student, Industrial and Enterprise Systems Engineering ~Assistant Professor, Industrial and Enterprise Systems Engineering etry and size. The effectiveness of this method is demonstrated using a planar truss design optimization benchmark problem.
منابع مشابه
Large Scale Structural Optimization Using Genetic
This thesis explores novel parameterization concepts for large scale topology optimization that enables the use of evolutionary algorithms in large-scale structural design. Specifically, two novel parameterization concepts based on generative algorithms and Boolean random networks are proposed that facilitate systematic exploration of the design space while limiting the number of design variabl...
متن کاملA NEW HYBRID ALGORITHM FOR TOPOLOGY OPTIMIZATION OF DOUBLE LAYER GRIGS
In this paper, for topology optimization of double layer grids, an efficient optimization method is presented by combination of Imperialist Competitive Algorithm (ICA) and Gravitational Search Algorithm (GSA) which is called ICA-GSA method. The present hybrid method is based on ICA but the moving of countries toward their relevant imperialist is done using the la...
متن کاملCOMPOSITION OF ISOGEOMETRIC ANALYSIS WITH LEVEL SET METHOD FOR STRUCTURAL TOPOLOGY OPTIMIZATION
In the present paper, an approach is proposed for structural topology optimization based on combination of Radial Basis Function (RBF) Level Set Method (LSM) with Isogeometric Analysis (IGA). The corresponding combined algorithm is detailed. First, in this approach, the discrete problem is formulated in Isogeometric Analysis framework. The objective function based on compliance of particular lo...
متن کاملMETAHEURISTIC-BASED SIZING AND TOPOLOGY OPTIMIZATION AND RELIABILITY ASSESSMENT OF SINGLE-LAYER LATTICE DOMES
Economy and safety are two important components in structural design process and stablishing a balance between them indeed results in improved structural performance specially in large-scale structures including space lattice domes. Topology optimization of geometrically nonlinear single-layer lamella, network, and geodesic lattice domes is implemented using enhanced colliding-bodies optimizati...
متن کاملTransient Perturbations on Scale-Free Boolean Networks with Topology Driven Dynamics
Taking into account the topology of genetic regulatory networks and abstracting recent findings about them, we investigate the behavior of a new, more biologically plausible, variation of the original Random Boolean Network paradigm. We study the dynamics of Boolean networks with scale-free structures, that evolve in time using a semi-synchronous topology-driven update scheme. Simulating statis...
متن کامل