Network Intrusion Detection Design Using Feature Selection of Soft Computing Paradigms
نویسندگان
چکیده
The network traffic data provided for the design of intrusion detection always are large with ineffective information and enclose limited and ambiguous information about users’ activities. We study the problems and propose a two phases approach in our intrusion detection design. In the first phase, we develop a correlation-based feature selection algorithm to remove the worthless information from the original high dimensional database. Next, we design an intrusion detection method to solve the problems of uncertainty caused by limited and ambiguous information. In the experiments, we choose six UCI databases and DARPA KDD99 intrusion detection data set as our evaluation tools. Empirical studies indicate that our feature selection algorithm is capable of reducing the size of data set. Our intrusion detection method achieves a better performance than those of participating intrusion detectors. Keywords—Intrusion detection, feature selection, k-nearest neighbors, fuzzy clustering, Dempster-Shafer theory
منابع مشابه
Anomaly Detection Using SVM as Classifier and Decision Tree for Optimizing Feature Vectors
Abstract- With the advancement and development of computer network technologies, the way for intruders has become smoother; therefore, to detect threats and attacks, the importance of intrusion detection systems (IDS) as one of the key elements of security is increasing. One of the challenges of intrusion detection systems is managing of the large amount of network traffic features. Removing un...
متن کاملIntegrated Intrusion Detection System Using Soft Computing
Intrusion Detection systems are increasingly a key part of system defense. Various approaches to Intrusion Detection are currently being used but they are relatively ineffective. Among the several soft computing paradigms, we investigated genetic algorithms and neural networks to model fast and efficient Intrusion Detection Systems. With the feature selection process proposed it is possible to ...
متن کاملEscalate Intrusion Detection using GA - NN
Intrusion Detection systems are increasingly a key part of system defense. Various approaches to Intrusion Detection are currently being used but they are relatively ineffective. Among the several soft computing paradigms, we investigated genetic algorithms and neural networks to model fast and efficient Intrusion Detection Systems. With the feature selection process proposed it is possible to ...
متن کاملIntrusion Detection based on a Novel Hybrid Learning Approach
Information security and Intrusion Detection System (IDS) plays a critical role in the Internet. IDS is an essential tool for detecting different kinds of attacks in a network and maintaining data integrity, confidentiality and system availability against possible threats. In this paper, a hybrid approach towards achieving high performance is proposed. In fact, the important goal of this paper ...
متن کاملIdentifying Key Variables for Intrusion Detection Using Soft Computing Paradigms
This paper concerns using learning machines for intrusion detection. Two classes of learning machines are studied: Artificial Neural Networks (ANNs) and Support Vector Machines (SVMs). We show that SVMs are superior to ANNs for intrusion detection in three critical respects: SVMs train, and run, an order of magnitude faster; SVMs scale much better; and SVMs give higher classification accuracy. ...
متن کامل