Multispectral photoacoustic microscopy based on an optical–acoustic objective
نویسندگان
چکیده
We have developed reflection-mode multispectral photoacoustic microscopy (PAM) based on a novel optical-acoustic objective that integrates a customized ultrasonic transducer and a commercial reflective microscope objective into one solid piece. This technical innovation provides zero chromatic aberration and convenient confocal alignment of the optical excitation and acoustic detection. With a wavelength-tunable optical-parametric-oscillator laser, we have demonstrated multispectral PAM over an ultrabroad spectral range of 270-1300 nm. A near-constant lateral resolution of ∼2.8 μm is achieved experimentally. Capitalizing on the consistent performance over the ultraviolet, visible, and near-infrared range, multispectral PAM enables label-free concurrent imaging of cell nucleus (DNA/RNA contrast at 270 nm), blood vessel (hemoglobin contrast at 532 nm), and sebaceous gland (lipid contrast at 1260 nm) at the same spatial scale in a living mouse ear.
منابع مشابه
Gel wax-based tissue-mimicking phantoms for multispectral photoacoustic imaging
Tissue-mimicking phantoms are widely used for the calibration, evaluation and standardisation of medical imaging systems, and for clinical training. For photoacoustic imaging, tissue-mimicking materials (TMMs) that have tuneable optical and acoustic properties, high stability, and mechanical robustness are highly desired. In this study, gel wax is introduced as a TMM that satisfies these criter...
متن کاملDesign and Application of a Photoacoustic Sensor for Monitoring the Laser Generated Stress Waves in Optical Fiber
Measurement of stress transients generated by a 400ns pulsed HF laser in an infrared fluoride glass fiber has been made using fast time – response piezoelectric film transducer. Acoustic signals up to 12 mV with frequencies ranging in megahertz generated by 21 mJ laser pulse when passed through the fiber axis in the linear region. It is shown that useful information such as onset of non - linea...
متن کاملSpecial issue introduction: Photoacoustic microscopy
First proposed in the 1970s for non-destructive testing, the modern reincarnation of photoacoustic microscopy (PAM) has major impact in bio-medicine, spanning a wide range of applications from flow cytometry and cancer research to ophthalmology, neuroimaging and cardiovascular diagnostics. The hybrid nature of PAM combining optical excitation and acoustic detection provides it with a number of ...
متن کاملNear-infrared multispectral photoacoustic microscopy using a graded-index fiber amplifier
We demonstrate optical resolution photoacoustic microscopy (OR-PAM) of lipid-rich tissue using a multi-wavelength pulsed laser based on nonlinear fiber optics. 1047 nm laser pulses are converted to 1098, 1153, 1215, and 1270 nm pulses via stimulated Raman scattering in a graded-index multimode fiber. Multispectral PAM of a lipid phantom is demonstrated with our low-cost and simple technique.
متن کاملCharacterisation of a PVCP based tissue-mimicking phantom for Quantitative Photoacoustic Imaging
Photoacoustic imaging can provide high resolution images of tissue structure, pathology and function. As these images can be obtained at multiple wavelengths, quantitatively accurate, spatially resolved, estimates for chromophore concentration, for example, may be obtainable. Such a capability would find a wide range of clinical and pre-clinical applications. However, despite a growing body of ...
متن کامل