Decreased expression of Cu-Zn superoxide dismutase 1 in ants with extreme lifespan.
نویسندگان
چکیده
Reactive oxygen species, the by-products of oxidative energy metabolism, are considered a main proximate cause of aging. Accordingly, overexpression of the enzyme Cu-Zn superoxide dismutase 1 (SOD1) can lengthen lifespan of Drosophila melanogaster in the laboratory. However, the role of SOD1 as a main determinant of lifespan has been challenged on the grounds that overexpression might be effective only in compromised genetic backgrounds. Moreover, interspecific comparisons show lower levels of antioxidant activities in longer-lived species, suggesting that life-span extension may evolve through less reactive oxygen species generation from the mitochondria rather than higher expression of SOD1. The tremendous variation in lifespan between ant castes, ranging over 2 orders of magnitude, coupled with the fact that all individuals share the same genome, provides a system to investigate the role of SOD1 in the wild. We used the ant Lasius niger as a model system, because queens can reach the extreme age of 28 years, whereas workers and males live only 1-2 years and a few weeks, respectively. We cloned SOD1 and found that long-lived queens have a lower level of expression than workers and males. Specific enzyme-activity assays also showed higher SOD1 activity levels in males and workers compared with queens, which had SOD1 activity levels similar to that of D. melanogaster. Altogether, these data show that increased expression of SOD1 is not required for the evolution of extreme lifespan, even in a system in which differential gene expression is the only way to express phenotypes with great lifespan differences.
منابع مشابه
Regulation of the synthesis of superoxide dismutases in rat lungs during oxidant and hyperthermic stresses.
Heat shock proteins are induced at normal temperatures by oxidants and during reoxygenation following hypoxia. We now report cyanide-resistant O2 consumption increased 30-50% in rat lungs exposed to heat shock or reoxygenation following hypoxia. The synthesis of Cu,Zn superoxide dismutase, but not Mn superoxide dismutase, was increased in rat lung slices by in vivo hyperthermia (39 degrees C), ...
متن کاملRegulation of Cu-Zn superoxide dismutase on SCN2A in SH-SY5Y cells as a potential therapy for temporal lobe epilepsy
In order to evaluate SCN2A as a candidate gene for epileptic susceptibility and the use of a Cu-Zn superoxide dismutase (SOD) supplement as a potential therapy for epilepsy, SCN2A expression in the cortex and the correlation between SCN2A and Cu-Zn SOD in SH-SY5Y cells were examined. SCN2A expression and the concentration of Cu-Zn SOD in the cerebral cortexes of patients with primary and second...
متن کاملCloning and expression analysis of Drosophila extracellular Cu Zn superoxide dismutase
In the present study, we cloned and sequenced the mRNAs of the Sod3 [extracellular Cu Zn SOD (superoxide dismutase)] gene in Drosophila and identified two mRNA products formed by alternative splicing. These products code for a long and short protein derived from the four transcripts found in global expression studies (Flybase numbers Dmel\CG9027, FBgn0033631). Both mRNA process variants contain...
متن کاملEnhancement of Solubility and Specific Activity of a Cu/Zn Superoxide Dismutase by Co-expression with a Copper Chaperone in Escherichia coli
Background: Human Cu/Zn superoxide dismutase (hSOD1) is an antioxidant enzyme with potential as a therapeutic agent. However, heterologous expression of hSOD1 has remained an issue due to Cu2+ insufficiency at protein active site, leading to low solubility and enzymatic activity.Objectives:The effect of co-expressed human copper chaperone (hCCS) to enhance the solubility and enzymatic act...
متن کاملPrion protein expression and superoxide dismutase activity.
The function of the prion protein (PrPc) remains uncertain. It has been suggested that prion protein expression may aid cellular resistance to oxidative stress by influencing the activity of Cu/Zn superoxide dismutase (Cu,Zn SOD). The activity of Cu,Zn SOD was investigated in mice with different levels of PrPc expression. Increasing levels of PrPc expression were linked to increased levels of C...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 101 10 شماره
صفحات -
تاریخ انتشار 2004