Hierarchical Data Representation Model - Multi-layer NMF
نویسندگان
چکیده
In this paper, we propose a data representation model that demonstrates hierarchical feature learning using nsNMF. We extend unit algorithm into several layers. Experiments with document and image data successfully discovered feature hierarchies. We also prove that proposed method results in much better classification and reconstruction performance, especially for small number of features.
منابع مشابه
Hierarchical feature extraction by multi-layer non-negative matrix factorization network for classification task
In this paper, we propose multi-layer non-negative matrix factorization (NMF) network for classification task, which provides intuitively understandable hierarchical feature learning process. The layer-by-layer learning strategy was adopted through stacked NMF layers, which enforced non-negativity of both features and their coefficients. With the non-negativity constraint, the learning process ...
متن کاملFast Local Algorithms for Large Scale Nonnegative Matrix and Tensor Factorizations
Nonnegative matrix factorization (NMF) and its extensions such as Nonnegative Tensor Factorization (NTF) have become prominent techniques for blind sources separation (BSS), analysis of image databases, data mining and other information retrieval and clustering applications. In this paper we propose a family of efficient algorithms for NMF/NTF, as well as sparse nonnegative coding and represent...
متن کاملDeep Approximately Orthogonal Nonnegative Matrix Factorization for Clustering
Nonnegative Matrix Factorization (NMF) is a widely used technique for data representation. Inspired by the expressive power of deep learning, several NMF variants equipped with deep architectures have been proposed. However, these methods mostly use the only nonnegativity while ignoring task-specific features of data. In this paper, we propose a novel deep approximately orthogonal nonnegative m...
متن کاملNeuron Mathematical Model Representation of Neural Tensor Network for RDF Knowledge Base Completion
In this paper, a state-of-the-art neuron mathematical model of neural tensor network (NTN) is proposed to RDF knowledge base completion problem. One of the difficulties with the parameter of the network is that representation of its neuron mathematical model is not possible. For this reason, a new representation of this network is suggested that solves this difficulty. In the representation, th...
متن کاملSparse Deep Nonnegative Matrix Factorization
Nonnegative matrix factorization is a powerful technique to realize dimension reduction and pattern recognition through single-layer data representation learning. Deep learning, however, with its carefully designed hierarchical structure, is able to combine hidden features to form more representative features for pattern recognition. In this paper, we proposed sparse deep nonnegative matrix fac...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1301.6316 شماره
صفحات -
تاریخ انتشار 2013