Role of the pseudorabies virus gI cytoplasmic domain in neuroinvasion, virulence, and posttranslational N-linked glycosylation.
نویسندگان
چکیده
The glycoproteins I and E of pseudorabies virus are important mediators of cell-to-cell spread and virulence in all animal models tested. Although these two proteins form a complex with one another, ascribing any function to the individual proteins has been difficult. We have shown previously, using nonsense mutations, that the N-terminal ectodomain of the gE protein is sufficient for gE-mediated transsynaptic spread whereas the cytoplasmic domain of the protein is required for full expression of virulence. These same studies demonstrated that the cytoplasmic domain of gE is also required for endocytosis of the protein. In this report, we describe the construction of viruses with nonsense mutations in gI that allowed us to determine the contributions of the gI cytoplasmic domain to protein expression as well as virus neuroinvasion and virulence after infection of the rat eye. We also constructed double mutants with nonsense mutations in both gE and gI so that the contributions of both the gE and gI cytoplasmic domains could be determined. We observed that the gI cytoplasmic domain is required for efficient posttranslational modification of the gI protein. The gE cytoplasmic domain has no effect on gE posttranslational glycosylation. In addition, we found that infection of all gE-gI-dependent anterograde circuits projecting from the rat retina requires both ectodomains and at least one of the cytoplasmic domains of the proteins. The gI cytoplasmic domain promotes transsynaptic spread of virus better than the gE cytoplasmic domain. Interestingly, both gE and gI cytoplasmic tails are required for virulence; lack of either one or both results in an attenuated infection. These data suggest that gE and gI play differential roles in mediating directional neuroinvasion of the rat; however, the gE and gI cytoplasmic domains most likely function together to promote virulence.
منابع مشابه
Mutation of the YXXL endocytosis motif in the cytoplasmic tail of pseudorabies virus gE.
The role of alphaherpesvirus membrane protein internalization during the course of viral infection remains a matter of speculation. To determine the role of internalization of the pseudorabies virus (PRV) gE and gI proteins, we constructed viral mutants encoding specific mutations in the cytoplasmic tail of the gE gene that inhibited internalization of the gE-gI complex. We used these mutants t...
متن کاملRole of pseudorabies virus Us3 protein kinase during neuronal infection.
The pseudorabies virus (PRV) Us3 gene is conserved among the alphaherpesviruses and encodes a serine/threonine protein kinase that is not required for growth in standard cell lines. In this report, we used a compartmented culture system to investigate the role of PRV Us3 in viral replication in neurons, in spread from neurons to PK15 cells, and in axon-mediated spread of infection. We also exam...
متن کاملThe Relationship of Secretion and Activity of Recombinant Factor IX with N-Glycosylation
Background: Human coagulation factor IX (hFIX) is a glycoprotein with two N-glycosylation sites at the activation peptide. Since the activation peptide is removed in mature hFIX, the exact role of N-glycosylation is unclear. To investigate the role of N-glycosylation in the secretion and activity of hFIX, we inhibited N-glycosylation by tunicamycin in the stable Human Embryonic Kidney (HEK)- c...
متن کاملActin is a component of the compensation mechanism in pseudorabies virus virions lacking the major tegument protein VP22.
Despite being a major component of the pseudorabies virus tegument, VP22 is not required for PRV replication, virulence, or neuroinvasion (T. del Rio, H. C. Werner, and L. W. Enquist, J. Virol. 76:774-782, 2002). In the absence of VP22, tegument assembly compensates in a limited fashion with increased incorporation of cellular actin. Infection of epithelial cell lines expressing fluorescent act...
متن کاملCharacterization of pseudorabies virus mutants expressing carboxy-terminal truncations of gE: evidence for envelope incorporation, virulence, and neurotropism domains.
Glycoprotein E (gE) gene of pseudorabies virus (PRV) is conserved among diverse alphaherpesviruses and therefore is predicted to be important for virus survival. gE contributes to viral spread from cell to cell in a variety of hosts and is responsible, in part, for increased virulence or pathogenesis of the virus. Virulence and spread mediated by gE are thought to be highly correlated. We initi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of virology
دوره 74 8 شماره
صفحات -
تاریخ انتشار 2000