Boundary Effect of Ricci Curvature
نویسندگان
چکیده
On a compact Riemannian manifold with boundary, we study how Ricci curvature of the interior affects the geometry of the boundary. First we establish integral inequalities for functions defined solely on the boundary and apply them to obtain geometric inequalities involving the total mean curvature. Then we discuss related rigidity questions and prove Ricci curvature rigidity results for manifolds with boundary.
منابع مشابه
On Randers metrics of reversible projective Ricci curvature
projective Ricci curvature. Then we characterize isotropic projective Ricci curvature of Randers metrics. we also show that Randers metrics are PRic-reversible if and only if they are PRic-quadratic../files/site1/files/0Abstract2.pdf
متن کاملRICCI CURVATURE OF SUBMANIFOLDS OF A SASAKIAN SPACE FORM
Involving the Ricci curvature and the squared mean curvature, we obtain basic inequalities for different kind of submaniforlds of a Sasakian space form tangent to the structure vector field of the ambient manifold. Contrary to already known results, we find a different necessary and sufficient condition for the equality for Ricci curvature of C-totally real submanifolds of a Sasakian space form...
متن کاملEvolution of the first eigenvalue of buckling problem on Riemannian manifold under Ricci flow
Among the eigenvalue problems of the Laplacian, the biharmonic operator eigenvalue problems are interesting projects because these problems root in physics and geometric analysis. The buckling problem is one of the most important problems in physics, and many studies have been done by the researchers about the solution and the estimate of its eigenvalue. In this paper, first, we obtain the evol...
متن کاملUnique Continuation Results for Ricci Curvature
Unique continuation results are proved for metrics with prescribed Ricci curvature in the setting of bounded metrics on compact manifolds with boundary, and in the setting of complete conformally compact metrics on such manifolds. In addition, it is shown that the Ricci curvature forms an elliptic system in geodesic-harmonic coordinates naturally associated with the boundary data.
متن کاملMetrics with Non-negative Ricci Curvature on Convex Three-manifolds
We prove that the space of smooth Riemannian metrics on the three-ball with non-negative Ricci curvature and strictly convex boundary is path-connected; and, moreover, that the associated moduli space (i.e., modulo orientation-preserving diffeomorphisms of the threeball) is contractible. As an application, using results of Maximo, Nunes, and Smith [MNS], we show the existence of properly embedd...
متن کامل