Characterization and intercomparison of global moderate resolution leaf area index (LAI) products: Analysis of climatologies and theoretical uncertainties
نویسندگان
چکیده
[1] Leaf area index (LAI) is a critical variable for land surface and climate modeling studies. Several global LAI products exist, and it is important to know how these products perform and what their uncertainties are. Five major global LAI products—MODIS, GEOV1, GLASS, GLOBMAP, and JRC-TIP—were compared between 2003 and 2010 at a 0.01 spatial resolution and with a monthly time step. The daily Land-SAF product was used as a regional reference in order to evaluate the performance of other global products in Africa. Cross-sensor LAI conversion equations were derived for different biome types. Product uncertainties were assessed by looking into the product quantitative quality indicators (QQIs) attached to MODIS, GEOV1, and JRC-TIP. MODIS, GEOV1, GLASS, and GLOBMAP are generally consistent and show strong linear relationships between the products (R> 0.74), with typical deviations of< 0.5 for nonforest and< 1.0 for forest biomes. JRC-TIP, the only effective LAI product, is about half the values of the other LAI products. The average uncertainties and relative uncertainties are in the following order: MODIS (0.17, 11.5%)<GEOV1 (0.24, 26.6%)<Land-SAF (0.36, 37.8%) < JRC-TIP (0.43, 114.3%). The highest relative uncertainties usually appear in ecological transition zones. More than 75% of MODIS, GEOV1, JRC-TIP, and Land-SAF pixels are within the absolute uncertainty requirements ( 0.5) set by the Global Climate Observing System (GCOS), whereas more than 78.5% of MODIS and 44.6% of GEOV1 pixels are within the threshold for relative uncertainty (20%). This study reveals the discrepancies mainly due to differences between definitions, retrieval algorithms, and input data. Future product development and validation studies should focus on areas (e.g., sparsely vegetated and savanna areas) and periods (e.g., winter time) with higher uncertainties.
منابع مشابه
Intercomparison of Leaf Area Index Products for a Gradient of Sub-Humid to Arid Environments in West Africa
The Leaf Area Index (LAI) is a key variable in many land surface and climate modeling studies. To date, a number of LAI datasets have been developed based on time series of medium resolution optical remote sensing observations. Global validation exercises show the high value of these datasets, but at the same time they point out shortcomings, particularly in the presence of persistent cloud cov...
متن کاملThe Impact of Potential Land Cover Misclassification on MODIS Leaf Area Index (LAI) Estimation: A Statistical Perspective
Understanding the impact of vegetation mixture and misclassification on leaf area index (LAI) estimation is crucial for algorithm development and the application community. Using the MODIS standard land cover and LAI products, global LAI climatologies and statistics were obtained for both pure and mixed pixels to evaluate the effects of biome mixture on LAI estimation. Misclassification between...
متن کاملExtended Data-Based Mechanistic Method for Improving Leaf Area Index Time Series Estimation with Satellite Data
Leaf area index (LAI) is one of the key parameters in crop growth monitoring and global change studies. Multiple LAI products have been generated from satellite observations, many of which suffer from data discontinuities due to persistent cloud contamination and retrieval algorithm inaccuracies. This study proposes an extended data-based mechanistic method (EDBM) for estimating LAI time series...
متن کاملEvaluation and Intercomparison of MODIS and GEOV1 Global Leaf Area Index Products over Four Sites in North China
This study investigated the performances of the Moderate Resolution Imaging Spectroradiometer (MODIS) and GEOLAND2 Version 1 (GEOV1) Leaf Area Index (LAI) products using ground measurements and LAI reference maps over four sites in North China for 2011-2013. The Terra + Aqua MODIS and Terra MODIS LAI retrieved by the main algorithm and GEOV1 LAI within the valid range were evaluated and interco...
متن کاملSequential Method with Incremental Analysis Update to Retrieve Leaf Area Index from Time Series MODIS Reflectance Data
High-quality leaf area index (LAI) products retrieved from satellite observations are urgently needed for crop growth monitoring and yield estimation, land-surface process simulation and global change studies. In recent years, sequential assimilation methods have been increasingly used to retrieve LAI from time series remote-sensing data. However, the inherent characteristics of these sequentia...
متن کامل