ENSO Modulation: Is It Decadally Predictable?
نویسندگان
چکیده
Observations and climate simulations exhibit epochs of extreme El Ni~ no–Southern Oscillation (ENSO) behavior that can persist for decades. Previous studies have revealed a wide range of ENSO responses to forcings from greenhouse gases, aerosols, and orbital variations, but they have also shown that interdecadal modulation of ENSO can arise even without such forcings. The present study examines the predictability of this intrinsically generated component of ENSO modulation, using a 4000-yr unforced control run from a global coupled GCM [GFDL Climate Model, version 2.1 (CM2.1)] with a fairly realistic representation of ENSO. ExtremeENSO epochs from the unforced simulation are reforecast using the same (‘‘perfect’’) model but slightly perturbed initial conditions. These 40-member reforecast ensembles display potential predictability of the ENSO trajectory, extending up to several years ahead. However, no decadal-scale predictability of ENSO behavior is found. This indicates that multidecadal epochs of extreme ENSO behavior can arise not only intrinsically but also delicately and entirely at random. Previous work had shown that CM2.1 generates strong, reasonably realistic, decadally predictable high-latitude climate signals, as well as tropical and extratropical decadal signals that interact with ENSO.However, those slow variations appear not to lend significant decadal predictability to this model’s ENSO behavior, at least in the absence of external forcings. While the potential implications of these results are sobering for decadal predictability, they also offer an expedited approach to model evaluation and development, in which large ensembles of short runs are executed in parallel, to quickly and robustly evaluate simulations of ENSO. Further implications are discussed for decadal prediction, attribution of past and future ENSO variations, and societal vulnerability.
منابع مشابه
Predictable Components of ENSO Evolution in Real-time Multi-Model Predictions
The most predictable components of the El Niño-Southern Oscillation (ENSO) evolution in real-time multi-model predictions are identified by applying an empirical orthogonal function analysis of the model data that maximizes the signal-to-noise ratio (MSN EOF). The normalized Niño3.4 index is analyzed for nine 3-month overlapping seasons. In this sense, the first most predictable component (MSN ...
متن کاملAre historical records sufficient to constrain ENSO simulations?
[1] A control simulation of the GFDL CM2.1 global coupled GCM, run for 2000 years with its atmospheric composition, solar irradiance, and land cover held fixed at 1860 values, exhibits strong interdecadal and intercentennial modulation of its ENSO behavior. To the extent that such modulation is realistic, it could attach large uncertainties to ENSO metrics diagnosed from centennial and shorter ...
متن کاملWesterly Wind Bursts: ENSO’s Tail Rather than the Dog?
Westerly wind bursts (WWBs) in the equatorial Pacific occur during the development of most El Niño events and are believed to be a major factor in ENSO’s dynamics. Because of their short time scale, WWBs are normally considered part of a stochastic forcing of ENSO, completely external to the interannual ENSO variability. Recent observational studies, however, suggest that the occurrence and cha...
متن کاملDirect and indirect ENSO modulation of winter temperature over the Asian–Pacific–American region
In this study, the direct and indirect atmospheric responses over the Asian-Pacific-American region to the El Niño-Southern Oscillation (ENSO) are documented. Since ENSO is likely to induce the northward displacement of the East Asian trough (NDEAT), some of the influence of ENSO on the Asian-Pacific-American region is possibly indirect and acts by inducing NDEAT. To separate corresponding infl...
متن کاملReversed Spatial Asymmetries between El Niño and La Niña and Their Linkage to Decadal ENSO Modulation in CMIP3 Models
This study examines preindustrial simulations from Coupled Model Intercomparison Project, phase 3 (CMIP3), models to show that a tendency exists for El Niño sea surface temperature anomalies to be located farther eastward than La Niña anomalies during strong El Niño–Southern Oscillation (ENSO) events but farther westward than La Niña anomalies during weak ENSO events. Such reversed spatial asym...
متن کامل