New bounds for n4(k, d) and classification of some optimal codes over GF(4)
نویسندگان
چکیده
Let n4(k; d) be the minimum length of a linear [n; k; d] code over GF(4) for given values of k and d. For codes of dimension "ve, we compute the exact values of n4(5; d) for 75 previously open cases. Additionally, we show that n4(6; 14)=24, n4(7; 9)=18, and n4(7; 10)=20. Moreover, we classify optimal quaternary codes for some values of n and k. c © 2003 Elsevier B.V. All rights reserved.
منابع مشابه
Optimal Linear Codes Over GF(7) and GF(11) with Dimension 3
Let $n_q(k,d)$ denote the smallest value of $n$ for which there exists a linear $[n,k,d]$-code over the Galois field $GF(q)$. An $[n,k,d]$-code whose length is equal to $n_q(k,d)$ is called {em optimal}. In this paper we present some matrix generators for the family of optimal $[n,3,d]$ codes over $GF(7)$ and $GF(11)$. Most of our given codes in $GF(7)$ are non-isomorphic with the codes pre...
متن کاملNew linear codes over GF(8)1
Let [n, k, d]q-code be a linear code of length n, dimension k and minimum Hamming distance d over GF (q). One of the most important problems in coding theory is to construct codes with best possible minimum distances. Recently, the class of quasi-cyclic (QC) codes has been proven to contain many such codes. In this paper, thirty two codes over GF (8) are constructed (among them one optimal code...
متن کاملNew minimum distance bounds for linear codes over GF(5)
Let [n; k; d]q-codes be linear codes of length n, dimension k and minimum Hamming distance d over GF(q). In this paper, 32 new codes over GF(5) are constructed and the nonexistence of 51 codes is proved. c © 2003 Elsevier B.V. All rights reserved.
متن کاملQuantum codes from cyclic codes over GF(4m)
We provide a construction for quantum codes (hermitian-self-orthogonal codes over GF (4)) starting from cyclic codes over GF (4). We also provide examples of these codes some of which meet the known bounds for quantum codes.
متن کاملConstruction of (sometimes) Optimal Linear Codes
For the purpose of error correcting linear codes over a finite field GF (q) and fixed dimension k we are interested in codes with high minimum distance d as these allow the correction of up to b(d− 1)/2c errors. On the other hand we are interested in codes with minimum redundancy, i.e. codes of small length n. High minimum distance and small length are controversial goals for the optimization o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete Mathematics
دوره 281 شماره
صفحات -
تاریخ انتشار 2004