Equilibrium iron isotope fractionation at core-mantle boundary conditions.
نویسنده
چکیده
The equilibrium iron isotope fractionation between lower mantle minerals and metallic iron at core-mantle boundary conditions can be evaluated from the high-pressure 57Fe partial vibrational density of states determined by synchrotron inelastic nuclear resonant x-ray scattering spectroscopy using a diamond anvil. Ferropericlase [(Mg,Fe)O] and (Fe,Mg)SiO3- post-perovskite are enriched in heavy iron isotopes relative to metallic iron at ultrahigh pressures, as opposed to the equilibrium iron isotope fractionation between these compounds at low pressure. The enrichment of Earth and Moon basalts in heavy iron isotopes relative to those from Mars and asteroid Vesta can be explained by the equilibrium iron isotope fractionation during the segregation of Earth's core and the assumption that Earth was already differentiated before the Moon-forming "giant impact."
منابع مشابه
Iron isotopic fractionation between silicate mantle and metallic core at high pressure
The +0.1‰ elevated 56Fe/54Fe ratio of terrestrial basalts relative to chondrites was proposed to be a fingerprint of core-mantle segregation. However, the extent of iron isotopic fractionation between molten metal and silicate under high pressure-temperature conditions is poorly known. Here we show that iron forms chemical bonds of similar strengths in basaltic glasses and iron-rich alloys, eve...
متن کاملFirst-principles calculations of equilibrium silicon isotope fractionation among mantle minerals
Silicon isotope fractionation factors for mantle silicate minerals, including olivine, wadsleyite, ringwoodite, pyroxenes, garnet (pyrope), majorite, and Mg-perovskite, are calculated using density functional theory. Our results show that equilibrium fractionations of Si isotopes are negligible among pyroxenes, olivine, and pyrope, but are significant between olivine and its polymorphs (wadsley...
متن کاملOxygen and iron isotope constraints on near-surface fractionation effects and the composition of lunar mare basalt source regions
Oxygen and iron isotope analyses of low-Ti and high-Timare basalts are presented to constrain their petrogenesis and to assess stable isotope variations within lunar mantle sources. An internally-consistent dataset of oxygen isotope compositions of mare basalts encompasses five types of low-Ti basalts from the Apollo 12 and 15 missions and eight types of high-Ti basalts from the Apollo 11 and 1...
متن کاملHIGH-PRECISION SILICON ISOTOPE RATIO MEASUREMENTS OF EARTH AND ENSTATITIC METEORITES AND IMPLICATIONS FOR Si ISOTOPE FRACTIONATION DURING CORE FORMATION
Introduction: Core formation processes in planets may impart stable isotope ratio signatures on the bulk silicate Earth due to partitioning between the metallic core and silicate [1]. Enstatite chondrites (E-chondrites) are the only primitive meteorite group with stable oxygen isotope compositions similar to Earth [2]. The Echondrites also possess a metal phase with substantial amounts of Si. W...
متن کاملIron isotope fractionation by Fe(II)-oxidizing photoautotrophic bacteria
Photoautotrophic bacteria that oxidize ferrous iron (Fe[II]) under anaerobic conditions are thought to be ancient in origin, and the ferric (hydr)oxide mineral products of their metabolism are likely to be preserved in ancient rocks. Here, two enrichment cultures of Fe(II)-oxidizing photoautotrophs and a culture of the genus Thiodictyon were studied with respect to their ability to fractionate ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Science
دوره 323 5916 شماره
صفحات -
تاریخ انتشار 2009