Adaptive Domain Decomposition Methods for Finite and Boundary Element Equations
نویسندگان
چکیده
The use of the FEM and BEM in diierent subdomains of a non{overlapping Domain Decomposition (DD) and their coupling over the coupling boundaries (interfaces) brings about several advantages in many practical applications. The paper presents parallel solvers for large-scaled coupled FE{BE{DD equations approximating linear and nonlinear plane magnetic eld problems as well as plane linear elasticity problems. The parallel algorithms presented are of asymptotically optimal, or, at least, almost optimal complexity and of high parallel eeciency.
منابع مشابه
Application of Decoupled Scaled Boundary Finite Element Method to Solve Eigenvalue Helmholtz Problems (Research Note)
A novel element with arbitrary domain shape by using decoupled scaled boundary finite element (DSBFEM) is proposed for eigenvalue analysis of 2D vibrating rods with different boundary conditions. Within the proposed element scheme, the mode shapes of vibrating rods with variable boundary conditions are modelled and results are plotted. All possible conditions for the rods ends are incorporated ...
متن کاملModified Fixed Grid Finite Element Method in the Analysis of 2D Linear Elastic Problems
In this paper, a modification on the fixed grid finite element method is presented and used in the solution of 2D linear elastic problems. This method uses non-boundary-fitted meshes for the numerical solution of partial differential equations. Special techniques are required to apply boundary conditions on the intersection of domain boundaries and non-boundary-fitted elements. Hence, a new met...
متن کاملModified Fixed Grid Finite Element Method in the Analysis of 2D Linear Elastic Problems
In this paper, a modification on the fixed grid finite element method is presented and used in the solution of 2D linear elastic problems. This method uses non-boundary-fitted meshes for the numerical solution of partial differential equations. Special techniques are required to apply boundary conditions on the intersection of domain boundaries and non-boundary-fitted elements. Hence, a new met...
متن کاملUpdating finite element model using frequency domain decomposition method and bees algorithm
The following study deals with the updating the finite element model of structures using the operational modal analysis. The updating process uses an evolutionary optimization algorithm, namely bees algorithm which applies instinctive behavior of honeybees for finding food sources. To determine the uncertain updated parameters such as geometry and material properties of the structure, local and...
متن کاملBoundary-element-based Finite Element Methods for Helmholtz and Maxwell Equations on General Polyhedral Meshes
We present new finite element methods for Helmholtz and Maxwell equations for general three-dimensional polyhedral meshes, based on domain decomposition with boundary elements on the surfaces of the polyhedral volume elements. The methods use the lowest-order polynomial spaces and produce sparse, symmetric linear systems despite the use of boundary elements. Moreover, piecewise constant coeffic...
متن کامل