Kinetic mechanism of phosphofructokinase-2 from Escherichia coli. A mutant enzyme with a different mechanism.
نویسندگان
چکیده
The kinetic mechanisms of Escherichia coli phosphofructokinase-2 (Pfk-2) and of the mutant enzyme Pfk-2 were investigated. Initial velocity studies showed that both enzymes have a sequential kinetic mechanism, indicating that both substrates must bind to the enzyme before any products are released. For Pfk-2, the product inhibition kinetics was as follows: fructose-1,6-P2 was a competitive inhibitor versus fructose-6-P at two ATP concentrations (0.1 and 0.4 mM), and noncompetitive versus ATP. The other product inhibition patterns, ADP versus either ATP or fructose-6-P were noncompetitive. Dead-end inhibition studies with an ATP analogue, adenylyl imidodiphosphate, showed uncompetitive inhibition when fructose-6-P was the varied substrate. For Pfk-2, the product inhibition studies revealed that ADP was a competitive inhibitor versus ATP at two fructose-6-P concentrations (0.05 and 0.5 mM), and noncompetitive versus fructose-6-P. The other product, fructose-1, 6-P2, showed noncompetitive inhibition versus both substrates, ATP and fructose-6-P. Sorbitol-6-P, a dead-end inhibitor, exhibited competitive inhibition versus fructose-6-P and uncompetitive versus ATP. These results are in accordance with an Ordered Bi Bi reaction mechanism for both enzymes. In the case of Pfk-2, fructose-6-P would be the first substrate to bind to the enzyme, and fructose-1,6-P2 the last product to be released. For Pfk-2, ATP would be the first substrate to bind to the enzyme, and APD the last product to be released.
منابع مشابه
A mutant phosphofructokinase produces a futile cycle during gluconeogenesis in Escherichia coli.
Strains of Escherichia coli bearing different forms of phosphofructokinase were used to assess the occurrence of futile cycling in cell resuspensions supplied with glycerol as gluconeogenic carbon source. A model was used to simulate results of different kinds of experiments for different levels of futile cycle. The main predictions of the model were experimentally confirmed in a strain with a ...
متن کاملStructural and functional roles of Cys-238 and Cys-295 in Escherichia coli phosphofructokinase-2.
Modification of Escherichia coli phosphofructokinase-2 (Pfk-2) with pyrene maleimide (PM) results in a rapid inactivation of the enzyme. The loss of enzyme activity correlates with the incorporation of 2 mol of PM/mol of subunit and the concomitant dissociation of the dimeric enzyme. The two modified residues were identified as Cys-238 and Cys-295. In the presence of the negative allosteric eff...
متن کاملSoluble Expression and Purification of Q59L Mutant L-asparaginase in the Presence of Chaperones in SHuffle™ T7 strain
Background and Aims: Q59L mutant of L-asparaginase enzyme from Escherichia coli (E. coli) has been introduced with lower side effects. This version of the enzyme might have potential applications in the treatment of leukemia patients. We utilized SHuffle T7 strain of E. coli, to produce the mutant enzyme in the presence of chaperone molecules. Materials and Methods: Q59LAsp gene was cloned in...
متن کاملConstruction of an iss deleted mutant strain from a native avian pathogenic Escherichia coli O78: K80 and in vitro serum resistance evaluation of mutant
BACKGROUND: Colibacillosis, caused by different serotypes of avian pathogenic Escherichia coli (APEC), is one of the important diseases in poultry industry. The isolate O78 is the most prevalent serotype of APEC in Iran. One of the APEC virulence factors, increased serum survival (iss) gene, is related to serum resistance. The usual form of colibacillosis in avian is extraintestinal, and serum ...
متن کاملExamining Escherichia coli glycolytic pathways, catabolite repression, and metabolite channeling using Δpfk mutants
BACKGROUND Glycolysis breakdowns glucose into essential building blocks and ATP/NAD(P)H for the cell, occupying a central role in its growth and bio-production. Among glycolytic pathways, the Entner Doudoroff pathway (EDP) is a more thermodynamically favorable pathway with fewer enzymatic steps than either the Embden-Meyerhof-Parnas pathway (EMPP) or the oxidative pentose phosphate pathway (OPP...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 259 10 شماره
صفحات -
تاریخ انتشار 1984