Climbing Fiber Burst Size and Olivary Sub-threshold Oscillations in a Network Setting

نویسندگان

  • Jornt R. De Gruijl
  • Paolo Bazzigaluppi
  • Marcel T. G. de Jeu
  • Chris I. De Zeeuw
چکیده

The inferior olivary nucleus provides one of the two main inputs to the cerebellum: the so-called climbing fibers. Activation of climbing fibers is generally believed to be related to timing of motor commands and/or motor learning. Climbing fiber spikes lead to large all-or-none action potentials in cerebellar Purkinje cells, overriding any other ongoing activity and silencing these cells for a brief period of time afterwards. Empirical evidence shows that the climbing fiber can transmit a short burst of spikes as a result of an olivary cell somatic spike, potentially increasing the information being transferred to the cerebellum per climbing fiber activation. Previously reported results from in vitro studies suggested that the information encoded in the climbing fiber burst is related to the occurrence of the spike relative to the ongoing sub-threshold membrane potential oscillation of the olivary cell, i.e. that the phase of the oscillation is reflected in the size of the climbing fiber burst. We used a detailed three-compartmental model of an inferior olivary cell to further investigate the possible factors determining the size of the climbing fiber burst. Our findings suggest that the phase-dependency of the burst size is present but limited and that charge flow between soma and dendrite is a major determinant of the climbing fiber burst. From our findings it follows that phenomena such as cell ensemble synchrony can have a big effect on the climbing fiber burst size through dendrodendritic gap-junctional coupling between olivary cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Encoding of Oscillations by Axonal Bursts in Inferior Olive Neurons

Inferior olive neurons regulate plasticity and timing in the cerebellar cortex via the climbing fiber pathway, but direct characterization of the output of this nucleus has remained elusive. We show that single somatic action potentials in olivary neurons are translated into a burst of axonal spikes. The number of spikes in the burst depends on the phase of subthreshold oscillations and, theref...

متن کامل

Reading the Clock: How Purkinje Cells Decode the Phase of Olivary Oscillations

Climbing fiber responses in cerebellar Purkinje cells are described as being invariant. In this issue of Neuron, Mathy et al. show that the complex spike waveform changes with the number of spikes in a climbing fiber burst, which depends on the phase of olivary oscillations. In turn, different complex spike profiles affect synaptic plasticity at parallel fiber synapses. Thus, information on inf...

متن کامل

Olivary subthreshold oscillations and burst activity revisited

The inferior olive (IO) forms one of the major gateways for information that travels to the cerebellar cortex. Olivary neurons process sensory and motor signals that are subsequently relayed to Purkinje cells. The intrinsic subthreshold membrane potential oscillations of the olivary neurons are thought to be important for gating this flow of information. In vitro studies have revealed that the ...

متن کامل

Somatomotor and oculomotor inferior olivary neurons have distinct electrophysiological phenotypes.

The electrophysiological properties of rat inferior olive (IO) neurons in the dorsal cap of Kooy (DCK) and the adjacent ventrolateral outgrowth (VLO) were compared with those of IO neurons in the principal olive (PO). Whereas DCK/VLO neurons are involved in eye movement control via their climbing fiber projection to the cerebellar flocculus, PO neurons control limb and digit movements via their...

متن کامل

Microlesions of the inferior olive reduce vestibular modulation of Purkinje cell complex and simple spikes in mouse cerebellum.

Cerebellar Purkinje cells have two distinct action potentials: complex spikes (CSs) are evoked by single climbing fibers that originate from the contralateral inferior olive. Simple spikes (SSs) are often ascribed to mossy fiber-granule cell-parallel fiber inputs to Purkinje cells. Although generally accepted, this view lacks experimental support. Vestibular stimulation independently activates ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2012