Interaction of cationic carbosilane dendrimers and their complexes with siRNA with erythrocytes and red blood cell ghosts.
نویسندگان
چکیده
We have investigated the interactions between cationic NN16 and BDBR0011 carbosilane dendrimers with red blood cells or their cell membranes. The carbosilane dendrimers used possess 16 cationic functional groups. Both the dendrimers are made of water-stable carbon-silicon bonds, but NN16 possesses some oxygen-silicon bonds that are unstable in water. The nucleic acid used in the experiments was targeted against GAG-1 gene from the human immunodeficiency virus, HIV-1. By binding to the outer leaflet of the membrane, carbosilane dendrimers decreased the fluidity of the hydrophilic part of the membrane but increased the fluidity of the hydrophobic interior. They induced hemolysis, but did not change the morphology of the cells. Increasing concentrations of dendrimers induced erythrocyte aggregation. Binding of short interfering ribonucleic acid (siRNA) to a dendrimer molecule decreased the availability of cationic groups and diminished their cytotoxicity. siRNA-dendrimer complexes changed neither the fluidity of biological membranes nor caused cell hemolysis. Addition of dendriplexes to red blood cell suspension induced echinocyte formation.
منابع مشابه
Cationic carbosilane dendrimers and oligonucleotide binding: an energetic affair.
Generation 2 cationic carbosilane dendrimers hold great promise as internalizing agents for gene therapy as they present low toxicity and retain and internalize the genetic material as an oligonucleotide or siRNA. In this work we carried out complete in silico structural and energetical characterization of the interactions of a set of G2 carbosilane dendrimers, showing different affinity toward...
متن کاملInteraction of cationic phosphorus dendrimers with lipid membranes
Large unilamellar liposomes and multilamellar vesicles consisting of DMPC interacted with cationic phosphorus-containing dendrimers CPDs G3 and G4. DSC and ζ -potential measurements have shown that liposomal-dendrimeric molecular recognition occurs due to the interaction between the complementary surface groups. Calorimetric studies indicate that the enthalpy of the transition of the lipids tha...
متن کاملInteraction of cationic phosphorus dendrimers with lipid membranes
Large unilamellar liposomes and multilamellar vesicles consisting of DMPC interacted with cationic phosphorus-containing dendrimers CPDs G3 and G4. DSC and ζ -potential measurements have shown that liposomal-dendrimeric molecular recognition occurs due to the interaction between the complementary surface groups. Calorimetric studies indicate that the enthalpy of the transition of the lipids tha...
متن کاملWater-soluble carbosilane dendrimers protect phosphorothioate oligonucleotides from binding to serum proteins.
Treatment of dendriplexes formed between water-soluble carbosilane dendrimers and phosphorothioate oligodeoxynucleotides (ODN) with the anionic detergent sodium dodecyl sulfate disrupted the complexes indicating that the nature of the union in such dendriplexes is merely electrostatic. However, dendriplexes were not dissociated by serum proteins like bovine or human serum albumins, as assessed ...
متن کاملEvaluation of antioxidant and anti-cancer properties of curcumin / beta- and gamma-cyclodextrin complexes modified with chitosan nanoparticles on lung cancer cell A549
The aim of this study was to investigate the interaction modification of curcumin complex molecule (CUR) in beta- and gamma-cyclodextrin (β-CD and γ-CD) carriers with chitosan (CS) nanoparticles for targeted drug delivery and to compare their performance. The targeted drug delivery system includes the therapeutic agent of the CS nanoparticles targeting section of the same drug and the CD carrie...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biochimica et biophysica acta
دوره 1838 3 شماره
صفحات -
تاریخ انتشار 2014