Sofic and Almost of Finite Type Tree-Shifts

نویسندگان

  • Nathalie Aubrun
  • Marie-Pierre Béal
چکیده

We introduce the notion of sofic tree-shifts which corresponds to symbolic dynamical systems of infinite trees accepted by finite tree automata. We show that, contrary to shifts of infinite sequences, there is no unique minimal deterministic irreducible tree automaton accepting an irreducible sofic tree-shift, but that there is a unique synchronized one, called the Shannon cover of the tree-shift. We define the notion of almost finite type tree-shift which is a meaningful intermediate dynamical class in between irreducible finite type tree-shifts and irreducible sofic tree-shifts. We characterize the Shannon cover of an almost finite type tree-shift and we design an algorithm to check whether a sofic tree-shift is almost of finite type.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cellular automata between sofic tree shifts

We study the sofic tree shifts of A ∗ , where Σ∗ is a regular rooted tree of finite rank. In particular, we give their characterization in terms of unrestricted Rabin automata. We show that if X ⊂ A ∗ is a sofic tree shift, then the configurations in X whose orbit under the shift action is finite are dense in X , and, as a consequence of this, we deduce that every injective cellular automata τ ...

متن کامل

Dynamique symbolique des systèmes 2D et des arbres infinis. (Symbolic dynamics on multidimensional systems and infinite trees)

This thesis is devoted to the study of subshifts, or symbolic dynamical systems, defined on some finitely presented monoids like Zd or the infinite binary tree. The main result concerning multidimensional subshifts establishes that any effective subshift of dimension d can be obtained by factor map and projective subaction of a subshift of finite type of dimension d+ 1. This result has many app...

متن کامل

A Hierarchy of Irreducible Sofic Shifts

We define new subclasses of the class of irreducible sofic shifts. These classes form an infinite hierarchy where the lowest class is the class of almost finite type shifts introduced by B. Marcus. We give effective characterizations of these classes with the syntactic semigroups of the shifts.

متن کامل

2 00 8 Reducibility of Covers of Aft Shifts

In this paper we show that the reducibility structure of several covers of sofic shifts is a flow invariant. In addition, we prove that for an irreducible subshift of almost finite type the left Krieger cover and the past set cover are reducible. We provide an example which shows that there are non almost finite type shifts which have reducible left Krieger covers. As an application we show tha...

متن کامل

A hierarchy of shift equivalent sofic shifts

We define new subclasses of the class of irreducible sofic shifts. These classes form an infinite hierarchy where the lowest class is the class of almost finite type shifts introduced by B. Marcus. We give effective characterizations of these classes with the syntactic semigroups of the shifts. We prove that these classes define invariants shift equivalence (and thus for conjugacy). Finally, we...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010