Convexity and Lipschitz Behavior of Small Pseudospectra

نویسندگان

  • James V. Burke
  • Adrian S. Lewis
  • Michael L. Overton
چکیده

The -pseudospectrum of a matrix A is the subset of the complex plane consisting of all eigenvalues of complex matrices within a distance of A, measured by the operator 2-norm. Given a nonderogatory matrix A0, for small > 0, we show that the -pseudospectrum of any matrix A near A0 consists of compact convex neighborhoods of the eigenvalues of A0. Furthermore, the dependence of each of these neighborhoods on A is Lipschitz.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Triangular norms and k-Lipschitz property

Inspired by an open problem of Alsina, Frank and Schweizer, k-Lipschitz t-norms are studied. The k-convexity of continuous monotone functions is introduced. Additive generators of k-Lipschitz tnorms are completely characterized by means of k-convexity. For a given k ∈ [1,∞[ the pointwise infimum A∗k of the class of all k-Lipschitz t-norms is introduced.

متن کامل

Local strong convexity and local Lipschitz continuity of the gradient of convex functions

Given a pair of convex conjugate functions f and f∗, we investigate the relationship between local Lipschitz continuity of ∇f and local strong convexity properties of f∗.

متن کامل

Optimization and Pseudospectra, with Applications to Robust Stability

The -pseudospectrum of a matrix A is the subset of the complex plane consisting of all eigenvalues of all complex matrices within a distance of A. We are interested in two aspects of “optimization and pseudospectra.” The first concerns maximizing the function “real part” over an -pseudospectrum of a fixed matrix: this defines a function known as the -pseudospectral abscissa of a matrix. We pres...

متن کامل

Beyond Convexity: Stochastic Quasi-Convex Optimization

Stochastic convex optimization is a basic and well studied primitive in machine learning. It is well known that convex and Lipschitz functions can be minimized efficiently using Stochastic Gradient Descent (SGD). The Normalized Gradient Descent (NGD) algorithm, is an adaptation of Gradient Descent, which updates according to the direction of the gradients, rather than the gradients themselves. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Matrix Analysis Applications

دوره 29  شماره 

صفحات  -

تاریخ انتشار 2007