An essential amino acid residue in the protein translocation channel revealed by targeted random mutagenesis of SecY.
نویسندگان
چکیده
The SecY/Sec61alpha family of membrane proteins are the central subunits of the putative protein translocation channel. We introduced random mutations into a segment of Escherichia coli SecY within its cytoplasmic domain 5, which was shown previously to be important for the SecA-dependent translocation activity. Mutations were classified into those retaining function and those gaining a dominant-interfering ability caused by a loss of function. These analyses showed that Arg-357, Pro-358, Gly-359, and Thr-362 are functionally important; Arg-357, conserved in almost all organisms, was identified as an indispensable residue.
منابع مشابه
SecY and SecA interact to allow SecA insertion and protein translocation across the Escherichia coli plasma membrane.
SecA, the preprotein-driving ATPase in Escherichia coli, was shown previously to insert deeply into the plasma membrane in the presence of ATP and a preprotein; this movement of SecA was proposed to be mechanistically coupled with preprotein translocation. We now address the role played by SecY, the central subunit of the membrane-embedded heterotrimeric complex, in the SecA insertion reaction....
متن کاملMapping an interface of SecY (PrlA) and SecE (PrlG) by using synthetic phenotypes and in vivo cross-linking.
SecY and SecE are integral cytoplasmic membrane proteins that form an essential part of the protein translocation machinery in Escherichia coli. Sites of direct contact between these two proteins have been suggested by the allele-specific synthetic phenotypes exhibited by pairwise combinations of prlA and prlG signal sequence suppressor mutations in these genes. We have introduced cysteine resi...
متن کاملSecY-SecY and SecY-SecG contacts revealed by site-specific crosslinking.
Protein translocation across the cytoplasmic membrane of Escherichia coli is mediated by the integral membrane complex SecYEG and the peripherally bound ATPase SecA. To probe the environment of the cytoplasmic domains of SecY within the SecYEG complex, we introduced single cysteine residues in each of the six cytoplasmic domains. Neighbouring SecY molecules with a single cysteine residue in cyt...
متن کاملControl of glycosylation of MHC class II-associated invariant chain by translocon-associated RAMP4.
Protein translocation across the membrane of the endoplasmic reticulum (ER) proceeds through a proteinaceous translocation machinery, the translocon. To identify components that may regulate translocation by interacting with nascent polypeptides in the translocon, we used site-specific photo-crosslinking. We found that a region C-terminal of the two N-glycosylation sites of the MHC class II-ass...
متن کاملMapping the sites of interaction between SecY and SecE by cysteine scanning mutagenesis.
In Escherichia coli, the SecYEG complex mediates the translocation and membrane integration of proteins. Both genetic and biochemical data indicate interactions of several transmembrane segments (TMSs) of SecY with SecE. By means of cysteine scanning mutagenesis, we have identified intermolecular sites of contact between TMS7 of SecY and TMS3 of SecE. The cross-linking of SecY to SecE demonstra...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 98 9 شماره
صفحات -
تاریخ انتشار 2001