Emergence of terpene cyclization in Artemisia annua
نویسندگان
چکیده
The emergence of terpene cyclization was critical to the evolutionary expansion of chemical diversity yet remains unexplored. Here we report the first discovery of an epistatic network of residues that controls the onset of terpene cyclization in Artemisia annua. We begin with amorpha-4,11-diene synthase (ADS) and (E)-β-farnesene synthase (BFS), a pair of terpene synthases that produce cyclic or linear terpenes, respectively. A library of ~27,000 enzymes is generated by breeding combinations of natural amino-acid substitutions from the cyclic into the linear producer. We discover one dominant mutation is sufficient to activate cyclization, and together with two additional residues comprise a network of strongly epistatic interactions that activate, suppress or reactivate cyclization. Remarkably, this epistatic network of equivalent residues also controls cyclization in a BFS homologue from Citrus junos. Fitness landscape analysis of mutational trajectories provides quantitative insights into a major epoch in specialized metabolism.
منابع مشابه
An Efficient Chemoenzymatic Synthesis of Dihydroartemisinic Aldehyde
Artemisinin from the plant Artemisia annua is the most potent pharmaceutical for the treatment of malaria. In the plant, the sesquiterpene cyclase amorphadiene synthase, a cytochrome-dependent CYP450, and an aldehyde reductase convert farnesyl diphosphate (FDP) into dihydroartemisinic aldehyde (DHAAl), which is a key intermediate in the biosynthesis of artemisinin and a semisynthetic precursor ...
متن کاملRational engineering of plasticity residues of sesquiterpene synthases from Artemisia annua: product specificity and catalytic efficiency.
Most TPSs (terpene synthases) contain plasticity residues that are responsible for diversified terpene products and functional evolution, which provide a potential for improving catalytic efficiency. Artemisinin, a sesquiterpene lactone from Artemisia annua L., is widely used for malaria treatment and progress has been made in engineering the production of artemisinin or its precursors. In the ...
متن کاملEffect of arbuscular mycorrhizal (AM) colonization on terpene emission and content of Artemisia annua L.
Plant roots interact with a wide variety of rhizospheric microorganisms, including bacteria and the symbiontic arbuscular mycorrhizal (AM) fungi. The mycorrhizal symbiosis represents a series of complex feedbacks between plant and fungus regulated by their physiology and nutrition. Despite the widespread distribution and ecological significance of AM symbiosis, little is known about the potenti...
متن کاملEffect of Sugars on Artemisinin Production in Artemisia annua L.: Transcription and Metabolite Measurements
The biosynthesis of the valuable sesquiterpene anti-malarial, artemisinin, is known to respond to exogenous sugar concentrations. Here young Artemisia annua L. seedlings (strain YU) were used to measure the transcripts of six key genes in artemisinin biosynthesis in response to growth on sucrose, glucose, or fructose. The measured genes are: from the cytosolic arm of terpene biosynthesis, 3-hyd...
متن کاملThe biosynthesis of artemisinin (Qinghaosu) and the phytochemistry of Artemisia annua L. (Qinghao).
The Chinese medicinal plant Artemisia annua L. (Qinghao) is the only known source of the sesquiterpene artemisinin (Qinghaosu), which is used in the treatment of malaria. Artemisinin is a highly oxygenated sesquiterpene, containing a unique 1,2,4-trioxane ring structure, which is responsible for the antimalarial activity of this natural product. The phytochemistry of A. annua is dominated by bo...
متن کامل