Multivariate Differences, Polynomials, and Splines

نویسندگان

  • Jan
  • Thomas Kunkle
چکیده

We generalize the univariate divided difference to a multivariate setting by considering linear combinations of point evaluations that annihilate the null space of certain differential operators. The relationship between such a linear functional and polynomial interpolation resembles that between the divided difference and Lagrange interpolation. Applying the functional to the shifted multivariate truncated power produces a compactly supported spline by which the functional can be represented as an integral. Examples include, but are not limited to, the tensor product B-spline and the box spline.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Splines and geometric modeling

Piecewise polynomials of some xed degree and continuously di erentiable upto some order are known as splines or nite elements. Splines are used in applications ranging from image processing, computer aided design, to the solution of partial di erential equations via nite element analysis. The spline tting problem of constructing a mesh of nite elements that interpolate or approximate multivaria...

متن کامل

What Is the Natural Generalization of Univariate Splines to Higher Dimensions?

In the rst part of the paper, the problem of deening multi-variate splines in a natural way is formulated and discussed. Then, several existing constructions of multivariate splines are surveyed, namely those based on simplex splines. Various diiculties and practical limitations associated with such constructions are pointed out. The second part of the paper is concerned with the description of...

متن کامل

Generating dimension formulas for multivariate splines

Dimensions of spaces of multivariate splines remain unknown in general. A computational method to obtain explicit formulas for the dimension of spline spaces on simplicial partitions is described. The method is based on Hilbert series and Hilbert polynomials. It is applied to conjecture the dimension formulas for splines on the Alfeld split of a simplex and on several other partitions. AMS clas...

متن کامل

On the Linear Independence of Multivariate i?-Splines. II: Complete Configurations

The first part of this paper is concerned with global characterizations of both the multivariate ß-spline and the multivariate truncated power function as smooth piecewise polynomials. In the second part of the paper we establish combinatorial criteria for the linear independence of multivariate ß-splines corresponding to certain configurations of knot sets.

متن کامل

Multivariate Differences, Polynomials, and Splines

A constructive approach to Kergin interpolation in IR k : multivariate B-splines and La-19 Corollary 4.19. Let S be a nite set in IR d and let H be the set of distinct elements from the directional matrix N. Then N (S) = X H () (S): That is, if f is a function deened on S, then there exists a polynomial in N agreeing with f on S if and only if there exist polynomials p in () such that P p agree...

متن کامل

On multivariate polynomials in Bernstein-Bézier form and tensor algebra

The Bernstein-Bézier representation of polynomials is a very useful tool in computer aided geometric design. In this paper we make use of (multilinear) tensors to describe and manipulate multivariate polynomials in their Bernstein-Bézier form. As application we consider Hermite interpolation with polynomials and splines.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011