p-ADIC DIFFERENCE-DIFFERENCE LOTKA-VOLTERRA EQUATION AND ULTRA-DISCRETE LIMIT

نویسنده

  • SHIGEKI MATSUTANI
چکیده

We study the difference-difference Lotka-Volterra equations in p-adic number space and its p-adic valuation version. We point out that the structure of the space given by taking the ultra-discrete limit is the same as that of the p-adic valuation space. Since ultra-discrete limit can be regarded as a classical limit of a quantum object, it implies that a correspondence between classical and quantum objects might be associated with valuation theory. 2000 Mathematics Subject Classification. 35Q53, 12J20, 12H25, 81Sxx.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Difference - Difference Lotka - Volterra Equation and Ultra - Discrete Limit

In this article, we have studied the difference-difference Lotka-Volterra equations in p-adic number space and its p-adic valuation version. We pointed out that the structure of the space given by taking the ultra-discrete limit is the same as that of the p-adic valuation space.

متن کامل

The Lotka–Volterra equation over a finite ring Z/pZ

The discrete Lotka–Volterra equation over p-adic space was constructed since p-adic space is a prototype of spaces with non-Archimedean valuations and the space given by taking the ultra-discrete limit studied in soliton theory should be regarded as a space with the non-Archimedean valuations given in my previous paper (Matsutani S 2001 Int. J. Math. Math. Sci.). In this paper, using the natura...

متن کامل

ar X iv : n lin / 0 10 30 02 v 1 [ nl in . S I ] 4 M ar 2 00 1 Lotka - Volterra Equation over a Finite Ring

Discrete Lotka-Volterra equation over p-adic space was constructed since p-adic space is a prototype of spaces with the non-Archimedean valuations and the space given by taking ultra-discrete limit studied in soliton theory should be regarded as a space with the non-Archimedean valuations in the previous report (solv-int/9906011). In this article, using the natural projection from p-adic intege...

متن کامل

Ultra Discrete Limit in Soliton Theory and Non-Archimedean Valuation

In this article, I have studied the ultra discrete limit, which is currently studied in soliton theory, from point of view of valuation theory. A quantity obtained after taking the ultra discrete limit should be regarded as non-archimedean valuation, which is related to the p-adic valuation in number theory. The ultra discrete difference-difference equations, whose domain and range are given by...

متن کامل

Research Article Mean Square Summability of Solution of Stochastic Difference Second-Kind Volterra Equation with Small Nonlinearity

Difference equations with continuous time are popular enough with researches [1–8]. Volterra equations are undoubtedly also very important for both theory and applications [3, 8–12]. Sufficient conditions for mean square summability of solutions of linear stochastic difference second-kind Volterra equations were obtained by authors in [10] (for difference equations with discrete time) and [8] (...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001