A New Short-term Power Load Forecasting Model Based on Chaotic Time Series and SVM

نویسندگان

  • Dongxiao Niu
  • Yongli Wang
  • Chunming Duan
  • Mian Xing
چکیده

This paper presents a model for power load forecasting using support vector machine and chaotic time series. The new model can make more accurate prediction. In the past few years, along with power system privatization and deregulation, accurate forecast of electricity load has received increasing attention. According to the chaotic and non-linear characters of power load data, the model of support vector machines (SVM) based on chaotic time series has been established. The time series matrix has also been established according to the theory of phase-space reconstruction. The Lyapunov exponents, one important component of chaotic time series, are used to determine time delay and embedding dimension, the decisive parameters for SVM. Then support vector machines algorithm is used to predict power load. In order to prove the rationality of chosen dimension, another two random dimensions are selected to compare with the calculated dimension. And to prove the effectiveness of the model, BP algorithm is used to compare with the results of SVM. Findings show that the model is effective and highly accurate in the forecasting of short-term power load. It means that the model combined with SVM and chaotic time series learning system have more advantage than other models.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Study on Short-Term Load Forecasting Method Based on the PSO and SVM model

The short-term load forecasting is an important method for security dispatching and economical operation in electric power system, and its prediction accuracy directly affects the operating reliability of the electric system. So the global optimization ability of particle swarm optimization (PSO) algorithm and classification prediction ability of support vector machine (SVM) are combined in ord...

متن کامل

A Short-Term Load Forecasting Model with a Modified Particle Swarm Optimization Algorithm and Least Squares Support Vector Machine Based on the Denoising Method of Empirical Mode Decomposition and Grey Relational Analysis

As an important part of power system planning and the basis of economic operation of power systems, the main work of power load forecasting is to predict the time distribution and spatial distribution of future power loads. The accuracy of load forecasting will directly influence the reliability of the power system. In this paper, a novel short-term Empirical Mode Decomposition-Grey Relational ...

متن کامل

Short term load forecast by using Locally Linear Embedding manifold learning and a hybrid RBF-Fuzzy network

The aim of the short term load forecasting is to forecast the electric power load for unit commitment, evaluating the reliability of the system, economic dispatch, and so on. Short term load forecasting obviously plays an important role in traditional non-cooperative power systems. Moreover, in a restructured power system a generator company (GENCO) should predict the system demand and its corr...

متن کامل

Combination of Transformed-means Clustering and Neural Networks for Short-Term Solar Radiation Forecasting

In order to provide an efficient conversion and utilization of solar power, solar radiation datashould be measured continuously and accurately over the long-term period. However, the measurement ofsolar radiation is not available to all countries in the world due to some technical and fiscal limitations. Hence,several studies were proposed in the literature to find mathematical and physical mod...

متن کامل

Short-Term Load Forecasting in Power Systems Using Adaptive Fuzzy Critic Based Neural Network

Load forecasting constitutes an important tool for efficient planning and operation of power systems and its significance has been intensifying particularly, because of the recent movement towards open energy markets and the need to assure high standards on reliability. Accurate load forecasting is of great importance for power system operation. It is the basis of economic dispatch, hydrotherma...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. UCS

دوره 15  شماره 

صفحات  -

تاریخ انتشار 2009